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PREFACE

The finite dimensional representations of a ring over commuta-

tive fields have been studied in great detail for many types of ring, for

example, group rings or the enveloping algebras of finite dimensional Lie

algebras, but little is known about the finite dimensional representations

of a ring over skew fields although such information might be of great use.

The first part of this book is devoted to a classification of all possible

finite dimensional representations of an arbitrary ring over skew fields in

terms of simple linear data on the category of finitely presented modules

over the ring. The second part is devoted to a fairly detailed study of

those skew fields that arise in the first part and in the work of Cohn on

firs and skew fields.

As has been said, the main goal at the beginning is to study

finite dimensional representations of a ring over skew fields. An alternative

view of this is that we should like to classify all possible homomorphisms

from a ring to simple artinian rings; such a study was carried out in the

case of one dimensional representations which are simply homomorphisms to

skew fields by Cohn who showed that these homomorphisms are determined by

which sets of matrices become zero-divisors over the skew field and gave a

characterisation of the sets of matrices that could be exactly those that

become singular under a homomorphism to a skew field. This theory has a

particular application to firs, rings such that every left and right ideal

are free of unique rank to show that they have universal homomorphisms to

skew fields. This applies to the free algebra over a commutative field, and

the ring coproduct of a family of skew fields amalgamating a common skew sub-

field, and gives the free skew field on a generating set and the skew field

coproduct with amalgamation.

In order to classify homomorphisms from a ring to simple artinian

rings, it is necessary to investigate what type of information a homomorphism

gives on the ring. The most obvious point is that it induces certain rank
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functions on the modules over the ring; over a simple artinian ring,

S = M
n
(D), where D is a skew field, every module is a direct sum of

copies of the simple module, and the free module of rank one is the direct

sum of n copies of the simple module, so we can assign a rank to the

finitely generated modules over the ring taking values in 1 2z so that the
n

free module on one generator has rank 1. If there is a homomorphism from

R to S, we may assign ranks to the f.g. projectives or more generally

the finitely presented modules over R by p(M) is the rank over S of

MGRS. Considering the rank functions induced on finitely generated pro-

jectives is important for constructing universal homomorphisms from an

hereditary ring to simple artinian rings, whilst rank functions on finitely

presented modules are precisely what is needed to classify all homomorphisms

from the ring to simple artinian rings. The main result states that a rank

function p on the finitely presented modules over a k-algebra R taking

values in 1 2l arises from a homomorphism to a simple artinian ring if and
n

only if it satisfies the following axioms:

1. p(R1) = 1;
2. p (A®B) = p (A) + p (B) ;

3. if A 3 B 3 C -> 0 is an exact sequence of finitely presented modules

then p (C) 5 p (B) <_ p (A) + p (C) .

If R is a ring that is not a k-algebra, it is necessary to

have a fourth axiom:

4. p(R/mR) = 0 or 1 for any integer m.

Two homomorphisms ai:R - Si induce the same rank function if

and only if there is a commutative diagram of rings:

'Z
SI

R

SSz
2

In chapter 1, we begin the study of hereditary rings and rank

functions on finitely generated projectives over them. In the main, it is a

study of the category of finitely generated projectives and the ranks that

the rank function induces on the maps in the category. It is shown that this

behaves in a very similar way to the rank functions on von Neumann regular

rings, which is where the notion of a rank function came from; this analogy



ix

is developed to its logical conclusion in chapter 6, where it is shown that

a rank function taking values in the real numbers defined on the f.g. pro-

jectives over an hereditary ring must arise from a homomorphism to a von

Neumann regular ring.

Chapter 2 sets forth the first of the ring constructions that

are needed in order to construct homomorphisms, the ring coproduct amalgama-

ting a semisimple artinian subring. On the whole, it is a summary without

proofs of Bergman's coproduct theorems. Chapter 3 shows how projective rank

functions behave under the coproduct construction. It is also shown that if

a module M over R1 requires n generators then the module MRRR' over

the ring coproduct R' of R1 and R2 amalgamating a skew subfield F

still requires n generators provided that there are finitely generated

modules over R2 requiring arbitrary large numbers of generators; the

condition is clearly necessary. This may be regarded as the analogue of the

Grushko Neumann theorem. The results on projective rank functions are applied

to prove a recent theorem due to Linnell; a finitely generated group is

accessible if there is a bound on the size of finite subgroups.

Chapter 4 presents the second important construction, adjoining

universal inverses to maps between finitely generated projectives over a

ring; this was studied by Cohn for matrices in order to construct homo-

morphisms to skew fields, but it has usually been regarded as a difficult

technique, although it has arisen, usually in disguised form, in a number

of contexts. For example, one of the methods used for showing that some

finite dimensional algebra is of wild representation type amounts to adjoin-

ing a universal inverse to a suitable map. There are a number of ways of

studying this construction developed recently which make it a little easier

to calculate with and to think about, and the aim of this chapter is to

present them. At the end, the algebraic K-theory of a universal localisation

is discussed; there is an exact sequence for the algebraic K-theory that

generalises the Bass, Murthy sequence for central localisation.

Chapter 5 pulls together the various pieces presented in the

first four chapters in order to construct universal homomorphisms from an

hereditary algebra with a rank function on its finitely generated projectives

to a simple artinian ring. The idea is fairly simple; given a rank function

p on an hereditary ring R, we ask which maps between finitely generated

projectives have a chance of becoming invertible under a homomorphism from

R to a simple artinian ring that induces the given rank function; if

a:P - Q is such a map, then p(P) = p(Q) and a cannot factor through a
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projective of smaller rank. Such maps are called full maps. The universal

localisation of an hereditary ring at all full maps with respect to a rank

function taking values in 1 a is a perfect hereditary ring and it is
n

simple artinian in a large number of interesting cases. Chapter 6 completes

this circle of ideas by showing that if R is an hereditary ring with a

rank function on its finitely generated projectives taking values in the

real numbers, there is a homomorphism from R to a von Neumann regular ring

with a unique rank function that induces this rank function on R. This

theorem actually holds provided that all countably generated right and left

ideals over R are projective, which means that it applies to a von Neumann

regular ring with a rank function.

Chapter 7 contains a number of results on homomorphisms to

simple artinian rings beyond those that were discussed above. The space of

all possible rank functions on finitely presented modules over a k-algebra

that satisfy the axioms we stated earlier form in a natural way a I-convex

subset of an infinite dimensional vector space. Given two rank functions

that satisfy the axioms given, so does the rank function
g1p1 + g2p2

where

ql and q2 are positive rationals such that q1 + q2 = 1. It is shown in

the course of chapter 7 that every rank function p has a unique expression

in the form Eq,p. where q. are positive rationals such that q. = 1 and

pi are rank functions that cannot be written as the weighted sum of different

rank functions. So, the space of all possible rank functions is a sort of

locally finite dimensional 0-simplex.

The methods and theorems developed in the first part of this

book are of great use in studying the skew fields constructed by Cohn, and

the second half of this book is a fairly detailed investigation along these

lines.

In chapter 8, we investigate what is known about the centre of

the skew field and simple artinian coproduct. We have a complete answer when

we amalgamate over a central subfield; however, the results are rather

incomplete for simple artinian coproducts where none of the factors are skew

fields. Chapter 9 continues with a detailed discussion of the finite dimen-

sional division subalgebras of skew field coproducts and a number of other

related skew fields. As an example of the odd results that occur, it is

shown that if E1 and E2 are skew fields containing no elements algebraic

over the central subfield k, then El o EZ the skew field coproduct of
k

E1 and E2 amalgamating k can sometimes contain a finite dimensional

field extension L of K, but if it does, [L:k] must be divisible by two
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different primes; there is an example where EL:k7 = 6. There is also an

example of a skew field D with centre k such that DOkks and

DMkkP are skew fields where ks is the separable closure of k, and

kP
'

is the inseparable closure of k but Dokk = MP(D') for some skew

field D', where k is the algebraic closure of k; this settles a

question of Cohn and Dicks.

Chapter 10 develops the technique of the universal bimodule of

derivations in order to distinguish between various non-isomorphic skew

fields. In particular, it is shown that the free skew field on m generators

cannot be isomorphic to the free skew field on n generators for m x n.

It also gives a way for recognising when a skew field is a universal localisa-

tion of an hereditary subring.

Chapter 11 continues the investigation of the skew subfields of

a skew field coproduct; we are particularly interested in the commutative

subfields of such skew fields and in centralisers in matrix rings over a

free skew field. In the first case, it is possible to bound the transcend-

ence degree of commutative subfields of a skew field coproduct in terms of

the transcendence degree of commutative subfields of the factors and the

amalgamated skew field of the coproduct. For centralisers, it is shown that

a skew subfield D with transcendental centre of M (F) where F is a
n

free skew field over k has a finitely generated centre over k of trans-

cendence degree 1, its dimension over its centre is finite, and this

dimension must divide n2. At the end of the chapter, it is shown that a

2 generator skew subfield of a free skew field must either be free on those

2 generators or else it is commutative.

Chapter 12 develops the characterisation of the universal

localisations of hereditary rings that are skew fields which was developed

in chapter 10 into a characterisation of simple artinian universal localisa-

tions of hereditary rings; then it is shown that if T is a subring of a

simple artinian universal localisation of the hereditary ring R that

contains the image of R so that the map from R to T is an epimorphism,

then T is itself a universal localisation of R. It follows from this

result that epic endomorphisms of the free algebra over a commutative field

are isomorphisms; this is the non-commutative analogue of the Jacobian

conjecture.

The final chapter presents among other things a solution to an

old problem; it is shown that for any pair of integers a,b > 1, there

exists an extension of skew fields E 0 F such that the left dimension of
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E over F is a, whilst the right dimension is b. By extending the

construction, it is possible to construct a new class of hereditary artin-

ian rings of finite representation type. In order to effect these construc-

tions, we develop a new type of hereditary ring construction, the bimodule

amalgam rings; these are rings generated by two simple artinian rings S

and S' subject only to conditions on the S, S' bimodule

SS' = {Esis': si a S, si a S'}. When we are able to show that these

hereditary rings have a rank function, their properties are of particular

interest. In addition to the results mentioned above, they also allow us

to construct isomorphisms between skew fields that at first glance appear

to be quite different. As an example, it is shown that if E1 and E2 are

division subalgebras of the skew field F such that CE1:k] = CE2:k]

where k is a central subfield, then F
k
0 E1 is isomorphic to F

k

E2.

There are a number of people that I should like to thank for

their encouragement and help during the proving of these results and

subsequently during the time that I was writing them down. The first person

I should like to thank is Warren Dicks with whom I have discussed most of

the results of this book; his care and accuracy have been of great assist-

ance to me and many of the results have arisen out of conversations between

us. I should also like to thank Paul Cohn for his interest and encourage-

ment; I owe him a particular debt for having proven the first results in

this area. I should also like to thank Rufus Neal for bearing with me

despite the length of time that it has taken me to get this book into his

hands at Cambridge University Press, and I am very grateful to Diane Quarrie

for typing this book so well from a partial typescript of poor quality.
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Homomorphisms to simple artinian rings
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1 HEREDITARY RINGS AND PROJECTIVE RANK FUNCTIONS

Definitions and preliminaries

In this chapter, we introduce the two main subjects of the first

part of this book; hereditary rings and the projective rank functions on

the rings, which we need in order to study their homomorphisms to simple

artinian rings.

A left hereditary ring is one such that all left ideals are

projective modules. We shall be interested in a number of variants of this

definition; a left semihereditary ring is one such that all finitely

generated left ideals are projective and a left Xo-hereditary ring is one

such that all countably generated left ideals are projective. We shall often

need to consider the two-sided properties, whose definitions we leave to

the reader; our results tend to work most often in the case of two-sided

X0-hereditary rings. We shall tend to miss out the words 'two-sided', when

using these conditions. There is a two-sided condition implied by all of

the one-sided conditions above; a ring is weakly semihereditary if, for all

pairs of maps a : PO -> Pl,s : P1 -- P2 between finitely generated projective

modules such that aR = 0, then P1 = P1 ® P1, where the image of a lies

in Pi and the kernel of S contains Pi. This is a two-sided condition

because of the duality between the category of finitely generated left

projectives and finitely generated right projectives induced by HomR(_,R).

We shall abbreviate 'finitely generated' to f.g., 'finitely

presented' to f.p., and, in the case of vector spaces over a skew field, we

abbreviate 'finite dimensional' to f.d.

Lemma 1.1 A left semihereditary ring is weakly semihereditary.

Proof: Suppose that a : PO -r P1,$ : P1 -s P2 are two maps such that as = 0,

where Pi is a finitely generated projective for i = 0, 1, 2. The image

of 6 is a projective module, so P1 = ims$ker$, and the image of a lies
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in the kernel of B.

A good reason for introducing the notion of a weakly semi-

hereditary ring is the following theorem due to Bergman.

Theorem 1.2 Every projective module over a weakly semihereditary ring is

a direct sum of finitely generated projective modules.

We refer the reader to 0.2.9 of Cohn (71) for a proof of this

result.

We shall work as long as possible with weakly semihereditary

rings; however, we shall eventually be forced to restrict our attention to

two-sided X,-hereditary rings. This class of rings draws much of its initial

interest from the fact that all von Neumann regular rings have this property.

By a von Neumann regular ring, we mean a ring R, such that for all x in

R, there exists an element y such that xyx = x; we shall see that there

are interesting connections between these classes of rings.

Much of the work of this chapter is just a study of the category

of finitely generated left projective modules over a weakly semihereditary

ring. This has been done with a great deal of success for semifirs and firs

by Cohn (71); a fir is a ring such that all left ideals and right ideals are

free of unique rank, and a semifir is a ring such that all finitely generated

left ideals (and so, all such right ideals too) are free of unique rank. In

this case, the arguments work well because we have a good notion of the size

of a finitely generated projective, and so we would like to have a generalisa-

tion of this idea for other rings. The relevant idea comes from the theory of

von Neumann regular rings.

Given a ring, R, we associate to it the abelian monoid P®(R)

of isomorphism classes of f.g. projectives under direct sum. We may also

associate to it a pre-ordered abelian group, the Grothendieck group, K0(R).

It is generated by the isomorphism classes of finitely generated left pro-

jective modules [P], subject to the relations [P®Q] _ [P] + [Q], for every

pair of isomorphism classes [P], [Q]. The pre-order is given by specifying

a positive cone, by which we mean simply a distinguished additive submonoid

of positive elements, and, in this case we take the isomorphism classes of

finitely generated projective modules, [P]. It is clear that K0(R) is the

universal group associated to P(R). Two projectives P and Q are said

to be stably isomorphic when [P] = [Q]; this is equivalent to the existence
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of an equation P ®Rn = Q $ Rn.

A projective rank function on a ring R is a homomorphism of

pre-ordered groups, p : KO(R) --1R, the real numbers, such that p([R1]) = 1.

By definition, p([P]) ? 0; we shall call a rank function faithful if

p([P]) > 0, for all non-zero P. We shall often simplify the notation by

writing p(P) for p([P]). We note that a projective rank function is a

left, right dual notion, because of the duality HomR(-,R).

A partial projective rank function is a homomorphism of pre-

ordered groups p : A ---P, where A is a subgroup of K0(R), containing

[R1], and the partial order is that induced from K0(R) by restriction.

We recall theorem 18.1 of Goodearl (79):

Theorem 1.3 Every partial projective rank function extends to a projective

rank function on R.

This result allows us to characterise those rings that have a

projective rank function. We say that a ring has unbounded generating number

if for every natural number n, there is a finitely generated module, M,

requiring at least n generators. It is an easy check that this equivalent

to the condition that for no m is there an equation of the form
Rm = R(m+l)

®P; and this is a left, right dual condition, which justifies

the two-sided nature of our definition. Cohn mentions this class of rings in

(Cohn 71) under the guise of rings such that for all n, the n by n identity

matrix cannot be written as an n by (n-1) matrix times an (n-1) by n

matrix. We leave it to the reader to check the equivalence.

Theorem 1.4 A ring has a projective rank function, if and only if it has

unbounded generating number.

Proof: Certainly, if R has a projective rank function, it must have unbounded

generating number.

Conversely, if R has unbounded generating number, the subgroup

of KO(R) generated by [R1] is isomorphic to Z, and under the isomorphism,

no stably free projective module can have negative image. So this isomorphism

defines a partial projective rank function on R, which must extend to a

projective rank function by 1.3.

We have shown that most rings have a projective rank function; in



6

fact, projective rank functions arise quite naturally on rings and one is

forced to study them in order to solve certain types of problems.

If S is a simple artinian ring, it has the form M
n
(D) for

some skew field D, and so, K0(S) can be identified in a natural way with

1 Z; so in this case, we have a unique rank function. If we have a homo-
n

morphism from a ring R to S, this induces a homomorphism from K0(R) to

K0(S), which is naturally isomorphic to n Z; therefore, homomorphisms to

simple artinian rings induce rank functions to
n

Z, and we shall need to

consider such rank functions in order to study homomorphisms to simple

artinian rings. More generally, many von Neumann regular rings have rank

functions so that in order to study homomorphisms to von Neumann regular

rings we shall need to consider quite general projective rank functions.

These projective rank functions appear naturally in the representa-

tion theory of finite dimensional algebras, for if R is a finite dimensional

algebra over the field k, and M is a finite dimensional module,

[M:k] = m, this defines a homomorphism from R to Mm(k) and so determines

a rank function p on R; it is easy to see that if P is a principal

projective module over R, P = Re, then

P (P) =
[Me:k]
[M:k]

which determines the projective rank function, since all f.g. projective

modules are direct sums of principal projective modules for an artinian ring.

Another class of rings with a projective rank function that

occurs naturally are the group rings in characteristic 0. We have a trace

function on the group ring FG, where F is a field of characteristic 0

and G is a group given by tr(Ifigi) = f0, where g
0

is the identity
i

element of the group. We extend this to a trace function on the ring M
n
(FG)

in the natural way and then we define the rank of an f.g. projective P to

be the trace of an idempotent e in Mn(FG) such that FGne = P. It is

well known that this is well-defined, taking values in Q, and that it is

a faithful projective rank function. This will turn out to be useful to us

later on in proving results due to Linnell on accessibility of f.g. groups.

Trace ideals

It is often useful to be able to work with a faithful rank function

on a ring rather than one that is not; so we should like to have a way of
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getting rid of the projectives of rank zero. There is a standard way of

dealing with this problem; we define the trace ideal of a set of f.g. pro-

jective modules, I, closed under direct sum to be the set of elements, T,

that lie in the image of some map from one of these projectives to the free

module of rank 1. It is easy to see that this set is an ideal, in fact, an

idempotent ideal known as the trace ideal of the projectives in I, and that

R/T is the universal R-ring such that R/T4aR P = 0, for all P in I.

We wish to study the behaviour of this construction.

Theorem 1.5 Let I be a set of f.g. projective modules closed under direct

sum over a ring R and let T be the trace ideal of this set of projectives.

For a f.g. projective, Q, R/TO R = 0, if and only if Q is a direct

summand of an element of I. The monoid of induced projective modules over

R/T is the quotient of Pe(R) by the relation P- P', if and only if

P S Q = PQ, where Q and Q' are direct summands of elements of I.

Proof: Suppose that R/TQ RQ = 0, then every element of Q lies in the

image of a map from an element of I to Q; since Q is finitely generated,

there must be a surjective map from an element of I to Q, which proves

the first assertion.

Suppose that R/TORa:R/TORP i R/TORP' is an isomorphism over

R/T; so there is a surjection:

a06: PQ -> P', where Q is a direct summand of an element of I. There-

fore, 0 -> ker aes - PQ - P' 3 0 is a split exact sequence, where
R/TQ Rae is an isomorphism, since it equals R/T0 R a. So kera e S becomes

0 over R/T, and must be a direct summand of an element of I. Therefore,

as required, we have an equation of the form P $Q = P' 9Q'. The converse is

clear.

We have the following consequence:

Theorem 1.6 Let R be a ring with a projective rank function p; let T

be the trace ideal of the projectives of rank 0; then p extends to a

projective rank function on R/T.

Proof: By the last theorem, there is a partial projective rank function

defined on the image of KO(R) in KO(R/T), induced by p. By theorem

1.3, this extends to a rank function on R/T.
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We can do rather better than this on a weakly semihereditary

ring. First, we need the following result on the behaviour of P® on passing

to the quotient by a trace ideal over a weakly semihereditary ring.

Theorem 1.7 Let R be a weakly semihereditary ring, and let T be the

trace ideal of the set of f.g. projectives, I, closed under direct sum;

then R/T is a weakly semihereditary ring, and P®(R/T) is the quotient

of P®(R) by the relation P - P' if and only if P ®Q P'®Q', where

Q and Q' are direct summands of an element of I.

Proof: We denote passage to R/T by bars, so R = R/T.

Let a P P',S P' P" be a pair of maps such that as = 0;

then over R, a$ = yd,Y : P -* Q, d : Q 3 P", where Q is an element of I.

So, over R, we have

(a Y)

(
R 1 = 0

and we note that (ay) = a, and \-6/ = S .

Since R is weakly semihereditary, P' 9 Q P1 ®P2, where

im(ay) c P1, and ker Ptherefore, P1 ®P2, where

ima c Pker that is, the weakly semihereditary condition is satisfied

for maps between induced projectives.

Let e : Rn -* Rn be a map such that e2 = e; that is, e(1-e) = 0.

So, by the previous argument, Rn = P1 ®P2, where im e c Pl c ker(1-e);

but the image of e is equal to the kernel of (1-e), so im e = P11 which

shows that all f.g. projectives are induced, and, in consequence, R/T is

weakly semihereditary.

The rest follows from theorem 1.5.

This allows us to pass from a weakly semihereditary ring with a

projective rank function to a weakly semihereditary ring with a faithful

projective rank function, simply by killing the projectives of rank 0. We

summarise this special case:

Theorem 1.8 Let R be a weakly semihereditary ring with a projective rank

function p; let T be the trace ideal of the f.g. projectives of rank 0;

then R/T is a weakly semihereditary ring, and p induces a faithful
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projective rank function on R/T. If p takes values in

n

Z, then R/T

is semihereditary on either side.

Proof: All is clear except for the last remark. In this case, R/T is a

weakly semihereditary ring with a faithful projective rank function, taking

values in 1 Z. Let M be a finitely generated left ideal and let P be
n

a f.g. projective over R/T of minimal rank such that there is a surjection

a : P + M. If x lies in the kernel of this surjection, we have a sequence:

R/T-+P-+M c R,

whose composite is 0; so P = P1 ®P2, where x is in P1, which is in

the kernel of the surjection. Hence, aIP2 : P2 -+ M, is a surjection. Since

p(P2) < p(P) unless x = 0, we deduce that a : P -+ M must be an isomorphism.

We have already noted that trace ideals must be idempotent;

curiously, the converse is true for left hereditary rings as we see next.

Theorem 1.9 Let R be a left hereditary ring, and let I be an idempotent

ideal; then I is a trace ideal.

Proof: As a left module over R, I is projective and since I = I2

R/I ®RI = I/I2. Hence, the trace ideal of the projective module I must

contain I, but it can be no larger, since its image in R/I is trivial.

The inner projective rank

If we have a partial projective rank function, pA' defined on

the subgroup A of KO(R), we define the generating number with respect to

PA of a finitely generated left module M over R by the formula:

g.pA(M) = inflP]{pA(P): [P] is in A, ] a surjection P i M}

If all stably free modules are free of unique rank, and A' is the subgroup

of K0(R) generated by ER1], the generating number with respect to pA''

where pA' is the unique rank function defined on A is the minimal number

of generators of a module. So we could hope and we shall show that our more

general notion is a useful refinement.

We intend to use a projective rank function p to analyse the
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category of f.g. projectives over a ring R. We have a rank associated to

each object of the category, so, our next aim is to give each map a rank.

Let a : P - Q be a map between two f.g. projectives; we define the inner

projective rank of the map with respect to p to be given by the formula:

p(a) = inf[P,]{p(P') : 3 a commutative diagram P\ -' Q}

P'I

it is sometimes useful to have a related notion to hand; we define the left

nullity of a to be p(P) - p(a). Similarly, the right nullity of a is

defined by p(Q) - p(a). p(P) = p(Q), the nullity of a is p(P) - p(a).

We may relate the inner projective rank of a map and the generating

number of suitable modules.

Lemma 1.10 Let R be a ring with a projective rank function p; then the

inner rank of a map a : P - Q is equal to the following:

infM {g.p(M): a(P) E M c Q, where M is a f.g. submodule of Q}.

In particular, if R is a left semihereditary ring,

I ( P P Q }p

Proof: If there is a commutative diagram P then a(P) c S(P') c Q

P'

and g.p (R(P')) : p(P'), so p(a) ?infM{g.p(M):a(P) cMcQ}.
Conversely, if a(P) S M c Q, and there exists a surjection

P' -> M, we have a commutative diagram P -w Q, since P is projective.

P'

Hence, P (a) = infM{g.P (M) :a (P) cMcQ} ,

A map a : P + Q is said to be left full with respect to p if

p(a) = p(P), and it is right full if p(a) = p(Q); it is full with respect

to p if it is left and right full. The reason for considering full maps

with respect to a projective rank function is that the only maps to have a

chance of becoming inverted under a homomorphism to a simple artinian ring

are the full maps with respect to the induced projective rank function; of

course, it is in general rather unlikely that they all do; however, we shall

find that for a hereditary ring there are homomorphisms for each projective

rank function that invert all full maps.
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We see that entirely the same theory may be set up on the dual

category of f.g. right projectives, where the rank of a f.g. right projective

module is that of its dual module. It is clear that the dual of a left full

map is right full and vice versa.

The important fact about the inner projective rank on a weakly

semihereditary ring is an analogue of Sylvester's law of nullity. We say

that a ring satisfies the law of nullity with respect to p, or, alternat-

ively, that the projective rank function P is a Sylvester projective rank

function, if for every pair of maps between f.g. projectives a : PO -* P11

B : P1 - * P2 such that as = 0, then P (a) + P (S) < _ p (PI) . If R is a
ring such that all f.g. projectives are free of unique rank, and this rank

is a Sylvester projective rank function, R is a Sylvester domain.

Theorem 1.11 Let R be a weakly semihereditary ring with a rank function

p; then p is a Sylvester projective rank function.

Proof: Recall that if as = 0 for a : PO -* P1, and a : P1 -* P2 over a

weakly semihereditary ring, then P1 = P' ®P", where the image of a lies

in P', and the kernel of s contains P', so that s factors through

P". Hence p (a) S p (P') , and p (s) <_ p (P") , so that p (a) + p (g) < p (P1) .

There are a few results that we can deduce from the law of nullity

for a projective rank function on a ring. On the whole, they are a little

technical, but since we shall need them later, it seems better to bore the

reader now than to break up the flow of later proofs. Their point is to

demonstrate the analogy between these rings with Sylvester projective rank

functions and simple artinian rings with the standard rank function.

Lemma 1.12 Let R be a ring with a Sylvester projective rank function p;

then for any pair of maps a : PO a P11 B : P1 -* P2'

P(as)2,p(a) + p(s) - p(P1). In particular, this holds for weakly semi-

hereditary rings for any projective rank function.

as
Proof: Suppose that P .P is a commutative diagram. Then we have

the maps (al Y) : P ; P ®Q, P ® -, P0
1 -d ' 1 Q 2 ,

and (alY) ( -) = 0
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so, by the law of nullity, p(ay) + p(6) :- p (P1) + P(Q). But

p(a) <_ p(aly) and p(s) < p( 6) ; therefore p(a) + p(s) - P(Pl) 5 P(Q)

Taking the infimum on the right proves the lemma.

We have the following corollary:

Corollary 1.13 Let R be a ring with a Sylvester projective rank function

p. If a is right full, then p(as) = p(s); dually, if a is left full,

then p(sa) = p(s). In particular, the composite of left full maps is left

full, and the composite of right full maps is right full.

Proof: Let a : PO P1 be right full, and let s : P1 -> P2 be some map;

then p(s) ? P(as) ? p(s) + p(a) - P(P1) = P(s). So, p(as) = p($). There-

fore, the composite of right full maps is right full. The rest follows by

duality.

Lemma 1.14 Let R be a ring with a Sylvester projective rank function p.

Let a : P1 -r P2, and s : Q1 -* Q2
be a pair of maps; then

P ( a ) + P ( s ) < s) <_ p(a) + P(Q1), P(s) + P(P2).

r aProof: Let P be a f.g. projective through which S) factors; then we

` /have an equation

(Y S
=

I 2)
(el e2)

Since 61e2 = 0, the law of nullity shows that p(dl) + p(c2) 5 P(P); so

p(a) + p(s) < p(gl) + p(e2) < p(P), and taking the infimum on the right

shows the first inequality.

a 0

If a = Sc, d : P1 -> P,c : P-P2, then
(a s) _ (0

0) (E
s)

so pry
s )

<_ p(P) + p(Q1), and taking the infimum over p(P) shows that

P(y ) <_ p(a) + P(Q1)
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similarly, if d'E', d' : Q1 -r Q, E' : Q + 2, then we have the equa-

tion:

(Y B \Y 5 \O O'

So
a O

p
Y

s p(Q) + p(P2), and taking the infimum over p(Q), we see that

aP(Y B) < P W + p(P2)

We have one more dull lemma to put behind us:

Lemma 1.15 Let R be a ring with a Sylvester projective rank function p;

if a is right full or B is left full, pa
Ol

= -

Y
p(a) + p(B), Also, for

/all a and B, P(O S) = P (a) + p(5).

Proof: We use the notation of the last lemma.

p(a) + p(B) < p (Y $) < p(a) + p(Ql); if a is left full,

p(a) + p(B) = p YBI, A similar argument works ifP(B) = P(Q1), and so

a is right full.

a01

If a = dl d2, and B = E1E2, we have the equation:

(O B) - (01 62)(01'2)

It follows that p(0 B) = p(a) + p(B)

In order to get fairly decisive results, it is necessary to

restrict our attention to a two-sided X.-hereditary ring with a faithful

rank function. Dicks pointed out that the proof of the next main theorem,

originally stated for two-sided hereditary rings actually holds in the

greater generality. It is the central point in the proof that a rank function

on a two-sided X
0
-hereditary algebra arises from a homomorphism to a von

Neumann regular ring, and the reader may well wish to read it only when he

comes to this theorem in chapter 6.

Theorem 1.16 Let R be a two-sided X,-hereditary ring with a faithful

projective rank function. Then every map between f.g. projectives factors
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as a right full followed by a left full map.

Proof: First, we show that every map has a non-trivial right factor that

is left full.

If a : P -> Q is not left full or right full, then, by Lemma

1.10, there exists P1, im (a) c P1 c Q, such that p(P1) < p(P), p(Q),

and p(P1) - p(a) < 1.

If a1 : P1 } Q is not a left full embedding, we may find P2

such that P1 S P2 c Q, p(P2) < p(P1), and p(P2) - p(a1) < /; in general,

at the nth stage, if a
n-1

: P
n-1

-)' Q is not a left full map, we choose

P P S P c Q, such that p(P < p(P ), and p(P ) - p(a ) <
n' n-1 n n n-1 n n-1 n

if this process does not terminate, we obtain the chain:

ima c P1 C P
2
c .......... c P c ...... c Q.

n

UPn is a countably generated submodule of Q, so it is projective,

and must be a direct sum of f.g. projectives by 1.2. So uPn P1 ®P2 a ....

where each P! is a f.g. projective module. N

Since ima is finitely generated, it lies in PN = e P', for
i=1

some N. We claim that the embedding PN c Q is a left full map.

Since PN is finitely generated, PN c Pn for some n, and so,

PN c Pm for all m 2 n. Moreover, it is a direct summand of each such Pm

since it is a direct summand of their union.

Consider a f.g. submodule, Q', such that PN c Q' c Q; consider

the split exact sequence:

0 -> Pm n Q' - P- Pm + Q' - 0 ,

Pm n PN , so Pm n Q' = PN a Q", for some module Q", and so

p(Pm n Q') ? P(PN).

Also, P-1 C P c P + Q', so that p(P + Q') >_ P(Pm m
m m

m - m
From the exact sequence, p(P

m
+ p(Q') = p(P

m
+ Q') + p(P n Q'), and we

have just shown that the right hand side is greater than or equal to

P(P") + P(P ) - 1
N m m'

so that we can deduce p(Q') >_ p(PN) -
M;

but this holds

for all m > n, and so we conclude that PN S Q must be a left full map

that is a right factor of a : P - Q; by construction, p(P") < p(Q).
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By duality, we deduce that we can always find a right full left

factor of a : P -Q, when a is not left or right full, a = ply, where

pl : P -* Q1, where p(Q1) < p(P). Since a sequence of right full maps is

right full, by 1.13, we may assume that the right full map is to some sub-

module Q1 of Q. So we have ima c Q1 c Q, where the induced map

a' : P i Q1 is right full. If the map yi . Q1 C Q is not left full, we

can find Q2, Q1 C Q2 c Q such that p(Q2) < p(Q2), and Q1 C Q2 is a

right full map. We assume that this process does not finish and obtain a

contradiction. If it continues, we have an ascending chain:

ima c Q1 C Q2 c .... c Q, where
P(Qi+l) < p(Qi)

iQi

is a countably generated submodule of Q, so it is projective and,

by 1.2, vQ. Z sQ!, where each Q is f.g. projective. For some m,

Q c ®Q'; again, for some n, Q' c Qn Q.+,, and ®Q' is a direct1- j=1 j j=1 j- n j=1 j
m

summand of Qn+l, so that we have p3(®1Qj) P(Qn+l) < p(Qn)'
Since

m J
Q1 c Qn factors through it cannot be right full, but it is the

composite of the right full maps Qi C Qi+1' so that it is right full by

1.13. This contradiction shows that our process must end at a finite stage;

that is, Qm c Q is left full for some m. But P i Q is the composite
m

of right full maps, and must be right full. So, we have a factorisation of

a : P -+ Q as a right full followed by a left full map.

When every map factors as a right full then a left full map with

respect to a projective rank function, we shall say that the ring, R, has

enough right and left full maps with respect to the projective rank function.

We describe a factorisation of a map as a right full by a left full map as

a minimal factorisation.

Corollary 1.17 Let R be a two-sided X0-hereditary ring with a faithful

projective rank function p. Then for any map between f.g. projectives

a : P - Q, p(a) = mine, {p(P') : ima c P' C Q}.

Proof: This follows at once from 1.16. For a = a1a2, where a : P -* P' is

right full and a2 is left full. By 1.12, p(a) ? p(a1) + p(a2) - p(P'); so

p (a) = P (P') .
There are occasions when this result is automatically true for a



16

weakly semihereditary ring; for example, if we have the descending chain

condition on the numbers p(P). It fails in general for weakly semihereditary

rings.

The torsion modules for a projective rank function

We pass from the study of quite general maps in the category of

f.g. projectives to the study of the full maps with respect to a projective

rank function. We shall assume that the projective rank function is faithful

throughout this section. The sensible way to study the full maps with

respect to a faithful Sylvester projective rank function is to look at the

full subcategory of modules that are cokernels of full maps with respect to

the projective rank function; we shall call this the category of torsion left

modules with respect to the rank function. If coker a = coker S, Schanuel's

lemma shows that a and B are stably associated, that is, we have a

matrices of maps equation:

1 (0 11) 1 0 OI )
P

where y and 6 are invertible maps.

Theorem 1.18 Let R be a semihereditary ring with a faithful projective

rank function p; then, T, the category of torsion modules with respect

to p, is an abelian category.

Proof: Let M1 and M2 be torsion modules with presentations:
a

0 i Q. # P. -+ M. -+ 0, where ai is a full map, and let 0 : Ml -> M2 be

some map.

We have a commutative diagram:

0-+

1 0'
0-+Q2 -+ P2 -+ M2 -+0

We have two presentations of imo:

0-+Q2-+ imO' +Q2+imo+0

0i Qi-+P1+ imO-+0 1
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where P' = imo' + Q2 is finitely generated, so it is projective, and

Schanuel's lemma shows that Q2 ®Pl = Qi ®P2, so Qi is also f.g. projec-

tive. Q1 S Qi
S

P1, and Q2 S PZ c P2, so that p(Qj) >_ p(Q1), and

p(PZ) >_ p(Q2); on putting this into Q2 ®P1 = Q1 ®P2, we see that equality

must hold; moreover, any f.g. module between Qi and P1 lies between Q1

and P1 and so has rank at least p(Q!) = p(P1), so imo is a torsion

module with respect to p. The kernel of 0 is Q1/Q1, and is also torsion,

whilst coker 0 = P2/P' which is torsion. Finally, finite direct sums of

torsion modules are torsion, which completes the proof that T is an abelian

category.

Clearly, this result will have consequences for the factorisations

of full maps. In particular, we shall need the following lemma later on.

Lemma 1.19 Let R be a semihereditary ring with a faithful projective rank

fY1 O
function p. Let as = where a,6 and yi., i = 1 to n, are all

:::-.

Yn)

full maps with respect to p; then there exists an invertible map 0 such

that

where a.i and
$i

are full maps such that aisi
= yi .

Proof: It is sufficient to prove this for n = 2 since the general case

y O
follows by induction. So, consider a$ = dl y ; coker yl embeds in coker as

with quotient module isomorphic to coker y2; coker as maps onto coker a,

and the image of coker y1 in coker a is a torsion module of the form coker all

where a1 is a left factor of yl' whilst the quotient of coker a by a

coker a1 is a torsion module of the form coker a2 where a2 is a left factor

of y2; therefore, there is an invertible map 0 such that

) ; inspection shows that {b 1B takes the formaO =(al 0
I S2

0

a2
2/

In certain cases, we can show that this category of torsion
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modules must be artinian and noetherian, which allows us to apply the Jordan-

Holder theorem in order to deduce the unique factorisation of maps into

atomic full maps. Our method of proving this is to show that the category is

noetherian in certain cases and then use a duality between the left torsion

and right torsion modules in order to prove that it is artinian too. This

duality occurs as a special case of a duality we find in a number of contexts,

in particular, in the representation theory of finite dimensional algebras,

so we shall develop it in some generality.

Let R be some ring, and let 1B be the full subcategory of

f.p. modules of homological dimension 1, such that HomR(M,R) = 0; we call

these the left bound modules; similarly, we define the right bound modules,

that are the objects of the category B1. Our conditions simply mean that

if M is in 1B if and only if M is the cokernel of some map a : P -* Q

such that a and ax : Qx -* Px are injective; it is clear that this should

lead to a duality between 1B and B1 by sending coker a to coker ax.

Theorem 1.20 The categories 1B and B1 are dual with respect to the

functors Extl(_,R).

a
Proof: Let 0 -* P i Q -> M -> 0 be a presentation by f.g. projectives of an

element of 1B; then, 0 -* Q a} Px -- Ext1(M,R) - 0, is a presentation of

Ext1(M,R), which we shall call the transpose of M, and write as TrM;

it is clear that TrM lies in B1, and that

Tr(TrM) = ExtR(TrM,R) = coker a = M.

ExtRR) is a contravariant functor of the first variable, so

M -* N induces a map Tr a: TrN -* TrM; we write this out explicitly in

order to show that the diagram below is commutative:

Tr(Tr6)
Tr(TrM) Tr(TrN)

IIZ 112

M N , where the vertical maps are simply

given by the isomorphisms coker (ax)x = coker a.

Let 0-*P1 a-- Q1 -M-0, and O-*P2142 Q2+N+O be
presentations of M and N; then we have the commutative diagram below:

O P
1

a Q1 - M-*O
Ba0-*P2 - Q2 +N -*0
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Dualising gives us:

xal
0-}Q2 i P2->TrN->O

Ix a Ix 1 Trs

O-*Q1 -* P1 ->TrM-r0

which allows us to exhibit the map Trs : TrN -> TrM. Dualising again gives,

xx
al

O - P1 -> Q1 -> Tr (TrM) -+ 0

a2x TrTrs
O r 2 -r Q2 + Tr(TrN) - 0

The natural equivalence on the category of f.g. projectives

between the identity and the double dual induces a natural equivalence

between the identity and the double transpose on 11and on B1.

If R is a semihereditary ring and M is a f.g. module,

Hom(M,R) = 0 is equivalent to M's having no projective direct summand. If

R is a semihereditary ring with a faithful rank function p and M is the

cokernel of a full map with respect to p, then M lies in 1B, since the

dual of a full map is a full map, and full maps must be injective. It is

clear that TrM is also the cokernel of a full map; consequently, Tr

restricts to a duality between the categories of left and right torsion

modules. In fact, it is clear that if we have a ring R with a faithful

Sylvester rank function, we may define the category of left and right torsion

modules and show that they are dual in the above way, since, under these

circumstances, all full maps are injective.

We wish to show that these categories of torsion modules with

respect to a projective rank function on a hereditary ring are both artinian

and noetherian, and it is clear from the duality that we have found that we

shall need to prove only one of these conditions, since the other is a direct

consequence. So we shall need a certain type of ascending chain conditions on

a ring.

Lemma 1.21 Let R be a left X,-hereditary ring with a faithful projective

rank function p. Let PO C P1 2 P2 c ...... c Q be an ascending chain of



20

f.g. submodules of the left projective module Q such that Pi S Pi+l is

a full map with respect to p for all i; then the chain must stop after

finitely many steps.

Proof: Consider UP. which is countably generated and so projective. There-
i 1

fore, by 1.2, uPi = ® Q., where each Q. is f.g. projective.
i J J m J m

Eventually, P S ® S P , for some m and n. ® Q. is a
0 -

j=1
n

j=1
m

direct summand of u1Pi, and so, of Pn; hence p( ® 9,) 5 p(Pn) with
j=1

m
equality only when Q. = P , since the rank function is faithful. However,

j=1 J n

P
0
c Pn is a full map, and equality must hold. Since this is true for all

P ,
m

for m' > n, the chain must stop.

If R is a ring with a faithful projective rank function p and

a P - Q is a full map with respect to p, we define it to be an atomic

full map if, in any non-trivial factorisation,

P (P') > P (P) = P (Q) = p(a).
We shall show that, over an X0-hereditary ring, any full map has

a finite factorisation as a product of atomic full maps, that any two such

factorisations have the same length, and the atomic full maps in one factorisa-

tion may be paired off with those in the other so that the corresponding maps

are stably associated, which, as we saw earlier, is the same as their co-

kernels being isomorphic.

Theorem 1.22 Let R be an X0-hereditary ring with a faithful projective

rank function p. The category of left or-right torsion modules with respect

to p is an artinian and noetherian abelian category.

Proof: By theorem 1.18, it is an abelian category and, by theorem 1.22, it

is a noetherian category; it is dual to the category of torsion modules on

the other side by 1.19 and the subsequence discussion, so it must be artinian

too.

Theorem 1.23 Let R be an X0-hereditary ring with a faithful projective
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rank function p. Then the atomic full maps with respect to p are exactly

the maps whose cokernels are simple objects in the category of torsion

modules. Consequently, every map has a factorisation into atoms; if

a = a1a2 .... an, and a = 6182 Sm, where ai, Sj are atoms, then

m = n, and there is a permutation in Sn such that ai is stably

associated to
aa(i)

Proof: It is clear that only the cokernels of atoms can be simple in the

category of torsion modules with respect to p, and that the cokernels of

atoms are simple.

Every object in an artinian and noetherian abelian category has

a finite composition series consisting of simple modules, any two such series

have the same length and the simple modules may be paired off between the

two series so that two paired together are isomorphic: remembering that if

the full map ai has the same cokernel as 6., that they must be stably

associated, and that a composition series for the cokernel of a full map in

the category of torsion modules corresponds to a factorisation of the map as

a product of simples, we deduce the theorem.

It follows at once from this that if a is an atomic full map,

then the ring of endomorphisms of coker a is a skew field, since it is a

simple object in an abelian category.
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2 THE COPRODUCT THEOREMS

The purpose of this chapter is to present statements of Bergman's

coproduct theorems (Bergman 74) and then to use these results as Bergman does

in (Bergman 74') to study a number of interesting ring constructions. Both

of these papers by Bergman are of great importance and this chapter is not

designed to obviate the need to read them, but rather to interest the reader

in their results and to make them plausible; however, we shall summarise all

that we need from them for the majority of this book. At the end of the

chapter, there is a discussion of the commutative analogues of some of the

constructions considered.

The basic coproduct theorems

For ease of notation, we shall consider right modules in this

chapter. We begin by running through a number of definitions that we need in

order to state the coproduct theorems.

An R-0 ring is a ring R with a specified homomorphism from

RO to R; it is a faithful R -ring if this is an embedding. Given a family

of RO-rings {R x : A E A}, there is a coproduct in the category of R0-rings,

which we shall write as R = u R., and call the ring coproduct of the family
R
O

of rings
{RA

X E A} amalgamating R0. There is no reason to suppose in

the general case that this ring is not the trivial ring. We call R
0

the

base ring of the coproduct and the rings RA are the factor rings of the

coproduct R. It is technically convenient to label A u {O} as M, and to

use u for a general element of M. Most of the time, we shall take RO

to be a semisimple artinian ring, and each RA will be a faithful R
0

-ring;

we shall see that under these conditions each RA embeds in the coproduct

R.

Ideally, we should like to be able to reduce all problems about

the module theory of the coproduct to the module theory of the factor rings;

in the case where R
0

is semisimple artinian and each Rx is a faithful R
0
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ring we can go a long way towards doing this; in fact, most practical problems

about such coproducts may be solved although the proof is often rather

technical.

An induced module over the coproduct R is a module of the form

e M @R R where M is a right R module; an induced module of the form
V v u U U

MOOR
O
R or an RA module of the form MOORORA is called a basic module.

We say that a map of the form ea ®RUR : e MUOR R a e N OR R is an induced
U U U U U uV

map.

There are certain induced modules which are clearly isomorphic

over R; let M = e M OR R be an induced module and suppose that for some
u u u

a1, we have an isomorphism MX
1
= 4 a (MO OR

O
RX

1
); then M = N, where

N = e NVO R, where MA = NX for A x A1,A2; NA1 = MBA ; and

N =
X2

MX
2
e (MOOR

O
RX

2
). Such an isomorphism of induced modules is called a

basic transfer map; if R
0

is a skew field it is usually called a free

transfer map.

There is one further type of isomorphism that we shall need to

consider, a particular sort of automorphism of an induced module. Let

M = e M OR R, and assume that for some V1 there is a linear functional
u u u

e : Mul -> R u Extend e to a linear functional e : M -r R by settingl.

e(M) = 0 for u x u1, and then extending by linearity. Let a be in R,

and write 1a : R R for left multiplication by a. Finally, for some
u2'

let x be in Mu2, and let y : R - M take 1 to x. Then, if ul x y2,

the composite elay has square 0, and if pi = u2 we ensure this by

specifying that x should lie in the kernel of e. The map IM - elay is

invertible; we call such an automorphism a transvection.

We may now state the main theorems. We shall assume that R
0

is

a semisimple artinian ring, and that each RX is a faithful RO-ring, for

the rest of the chapter.

Theorem 2.1 Let R
0

be a semisimple artinian ring, and
{Ra

: A E A}, a

family of faithful RO rings. Let R = u R . If M = e M OR R is an induced
R0 U 11 u

module, each M11 embeds in M, and M is isomorphic as an R
11

-module to

a direct sum of M and a basic module.
u

So we can write Ru c R, and M,1 c M.
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Theorem 2.2 Let R
0

be semisimple artinian, and {Rx : X EA) a family of

faithful R0-rings. Let R = u RX . Then any R-submodule of an induced module
Ro

is isomorphic to an induced module.

Theorem 2.3 Let R = u RV where RG is semisimple artinian, and each R
RD

is a faithful RD ring. Let f : M -r N be a surjection of induced modules;

then there is an isomorphism of induced modules g : M' = M, which is a

finite composition of basic transfers, and transvections such that the

composite gf : M' -> N is an induced map.

These three theorems allow us to deduce all the rest of those

results that we shall prove in this chapter; however, in later work, we shall

need technical versions of these theorems, and in order to state these results,

we shall need to set up a certain amount of the machinery to prove the co-

product theorems. We shall do this under the assumption that RD is a skew

field, and indicate the modifications needed to deal with the general case.

We assume that RQ is a skew field; then each R
U

is a free right

RG module, and we can choose a basis for RX of the form {1} U T . Write

T = T.. For each NX in the induced module N = ® N OR R we pick an RG
P u U

basis, Su. Write S = USA. If t is in TV we say that it is associated

to A; if s is in S., we say that it is associated to A; if s is in

So, we say that it is associated to no index. A monomial is a formal product

stIt2...tn...s a S, ti e T1 or else an element of S1 such that no two

successive terms in the series s,t1,...tn, are associated to the same index.

Let U be the set of monomials; an element of U is associated to A, if

and only if its last factor is associated to A. Every element of U is

associated to some index except for those in SG. We denote by U,,,,, those

elements of U that are not associated to A.

Theorem 2.4 (see theorem 2.1) Let R0 be a skew field, and let

{Ra
A E A} be a family of R rings. Let R = u R.; then the induced module

R0

N = $ Nu0 RJR has for a right RQ-basis the set U, defined in the foregoing
u u
material. For each A, N is the direct sum as right RX module of Nl and

a free right R,-module on the basis U,,,A.

Given A and u E U,,,A, we denote by CAu : N -* RA, the RX-linear
right 'co-efficient of u' map given by the decomposition of N in the last
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theorem; for u E U, we denote by
cou

: N -> R0, the R0-linear 'right co-

efficient of u' map given by the decomposition of N as an RO module in the

last theorem. For AE A, the A-support of an element x in N relative to

the decomposition of N in the last theorem, is the set of elements

U E U_A such that cAu(x) is not 0; x has empty A-support if and only if

it lies in NA. The O-support (or support) of an element consists of those

element u E U such that cOu(x) is not O.

The degree of a monomial st1...tn is defined to be (n+l), and

the degree of an element of S is 1; the degree of an element of N is the

maximum degree of a monomial in its support. We define an element x in N

to be A-pure, if all those monomials in its support of maximal degree are

associated to A. It is O-pure if it is not A-pure for any A.

Next, we well-order the sets S and T in some manner; this

induces a well-ordering on U, first by degree and then lexicographically,

reading from left to right.

The leading term of an element in N (with respect to the fixed

ordering) is the maximal element in its support. We call this the O-leading

term. If some element x is not A-pure, then some elements in its support

of maximal degree will not be associated to A; we define the A-leading

term of x to be the maximal element of this sort.

Theorem 2.5 (see theorem 2.2) Let RO be a skew field and let R = u R
R

X.

Let N be the induced module ® Nu0R R, and let S,T and U be defined
u u

as in the foregoing discussion. Let L be some R-submodule of N. Define

L
u

to be the R
u
-submodule of L, consisting of those elements whose u-

support does not contain the u-leading term of some non-u-pure element of L.

Then L ® L R, in the natural way.
u u Ru

We shall outline the adjustments needed to deal with the case

that R
0

is a semisimple artinian ring. The first step is to use Morita

equivalence to pass from this case to the particular situation that RO is

a direct sum of skew fields. This technique is of interest and use in its

own right.

Let R
0

be a semisimple artinian, and let S1, 52.... Sn be a

complete set of simple R
0

modules such that S. = S
J

, i = j. The pro-

jective module P = e Si is a projective generator over RO; so by Morita
i

equivalence the category of modules over RO is naturally equivalent to the
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category of modules over R0 = EndRO(P). Since each S. is simple and they

are mutually non-isomorphic RO is the direct sum of the endomorphism rings

of S., and so, it is a direct sum of skew fields.

Let RX be a faithful RD ring; then P 0 RX is a projective

generator over R., so that the category of modules over RA is naturally

equivalent to the category of modules over R = EndRX (P OR
O
RX), and there

is a natural embedding of RO in R..

We give an example to clarify what is happening here. Let

RO = M2(k) x k; in this case R0 is simply k x k. Let R1 = M3(k), where

R1 is an RD ring via

((:

\ ; b

d, e c d O

O O e

Then, R1 = M2(k), and it is an R ring via (a,b) -} (Oa 01

b/I

Returning to the general case, we are given a family of faithful

RQ rings,
{RA

: X E A) and we have associated to this a family of faithful

R rings,
{R1

: X E A} . We wish to study the ring R = R and, as
RO

before, we form the
0

-ring, R = EndR(P OR
O
R); it is clear that this is

simply the ring u RA.
RO

Therefore, in order to study the category of R modules, we may

as well study the category of R modules, which is a coproduct over a direct

sum of skew fields. All the statements of the next two theorems are Morita

invariant and so they translate well.

So for the present, we assume that RO is a direct sum of skew

fields, RO X Ki; Let
{e1

: i = 1 -> n} be the complete set of ortho-
i=l

gonal central idempotents. Any R0 module has a decomposition as a direct
n

sum of vector spaces over K1, M = ® Mel; we choose a basis B1 for each
i=1

Met as a vector space over K1. We call the n-tuple of bases {B1} a basis

for M over R0.

If RX is an R ring, it decomposes as a right RA-module,
n

RX 0 e1RX; we write 1RA = e1RA. In turn,
1R

decomposes as a right
i=l

n
RO module as

1R
= ® 1Re3; again, we write -1 RA = e1RXe3, we note that the
i=1
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usual formalism of matrix units works with respect to these superscripts. We

pick a basis for
R

as right K3 module, 1TA for i x j, and

1T1u{e1} for the remaining cases. We note that this gives us a basis for

RX as R0-module in the sense defined earlier.

Let {N u e M} be a family of R -modules. We choose an R -
11

basis for each N ,{S1}. Let S = u S1 and T = u 1 0T For each t in
au u i,u u

A,irj
iTAD, i and j are respectively the right and the left index of t; A

is the A-index of t. A member of S1 has the right index i, and if it

does not lie in NO, it has the natural A-index.

Let U be S and the set of formal products st1,...tn, where

s e S, t
1
, a T, where adjacent terms do not have the same A-index, but the

right index of any term is equal to the left index of the next term. The

right index or A-index of any such element is the right or A-index of its

last term. So we may partition U = uU1, where U1 is the set of elements
i

associated to i; we form the free K1 module N1 on U1 and consider

the R module N = e NO 1.
i

Let U' be those elements of U1 not associated with A. We

may form the RA module NA®(i®1U1K1OR
O
RA).

n
Theorem 2.6 Let RO be a direct sum of skew fields, iX1Ki. Let

{RA
: A e A}

be a family of faithful RO rings, and let IN, : u E M} be a collection of

Ru-modules. Then ® R, where R = R RA, is isomorphic to N as defined
u u o

above as RO module, and as RX module it is isomorphic to NA (®U'KIQRORA),

where U1 in this last representation is identified in N with the same sub-

set of U.

We note that for u e U1, uR is isomorphic to e1R via a map

sending u to e1. Consequently, the definition given in 2.6 allows us to

define co-ordinate functions c
uu

: N -> R
u

, which takes values in e1R,

where i is the right index of u.

As we did when RO was simply a skew field, we well-order S

and T. and then well-order U length lexicographically. We define degree,

u-purity, the p-leading term and so on as we did previously. To recover a

version of coproduct theorem 2.5, we need one more concept, that of homo-

geneity. Given an RO module M, we define m E M to be i-homogeneous if

met = m. An element is homogeneous if it is i-homogeneous for some i.
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n
Theorem 2.7 Let R be a direct sum of skew fields x Kl; let

0 i=l

{RA : X E A} be a family of faithful R rings, and let R = uRORA. Let N

be the induced module ® N RuR, and let L be an R-submodule of N. Let
u u

L1 be the R submodule of L consisting of those i-homogeneous elements of

L, whose u-support does not contain the p-leading term of some homogeneous
n

non-p-pure element of L; then ® L1 is an R submodule L of L, and
i=1 u u u

L L0 R.
u u Rp

In the more general case, where RD is a semisimple artinian

ring, each R is a faithful R0-ring, R = u R with an
RO u u u

R-submodule L, we pass by Morita equivalence denoted by bars to the case

described by the hypotheses of the last theorem. We then find distinguished

submodules Lu such that L = e LueR R; by Morita equivalence, we have sub-
ii

modules Lu such that L 2 e LueR R.
u u

We note a small corollary of 2.7, which will have some con-

sequence later.

Lemma 2.8 Let R = u R , where R is semisimple artinian, and each R
RO A 0 A

is a faithful R 0-ring. Let L be an R-submodule of the induced module

e N QR R; then, in the decomposition of L given in 2.7, and the following
u u u

discussion, L = ® L R, we find that L n N c L
P u Ru u- u

Proof: By the process of Morita equivalence, it is enough to show this, when

RO is a direct sum of skew fields. In this case, it is clear, for, if

1E L n Nu, lel is i-homogeneous and has empty p-support so it satisfies the

conditions to be in L
V

later on.

There is another result of this technical type that we shall need

Lemma 2.9 Let R = - RV where RO is a skew field. Let L be an R sub-
RO

module of an induced module N = e N OR R; write L = e L 0R R given by
u u u u u

theorem 2.5, and assume that L
0

is empty. Then if End E L for nx e NX,

each nx must be in L.
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Proof: We may assume that at least two of the nA are non-zero; so
Ena

is 0-pure. Write the support of Enx with respect to our well-ordered basis

in descending order. Given two finite strings of basis elements in descending

order {ai} and {bi} we shall say that {bi} is less than {ai} if for

the first place at which they differ bi < ai or else {b is an initial

string of {ai}. We choose Enx in L so that nx E L and the associated

string of basis elements is minimal in the above sense. EnA is 0-pure but

Enx 4 L0; so, it contains the leading term of some pure element which is

forced to take the form n for some n e N
x

; by subtracting an appropriate

multiple of n from EnA we reduce the support and obtain a contradiction.

It is clear that the information we have built up in the preceding

results allows us to answer a number of natural questions about ring co-

products, amalgamating a common semisimple artinian ring. We begin with a

few such applications.

Theorem 2.10 Let R =
UR

where RD is semisimple artinian and each Rx

is a faithful Ro ring. Then the homological (or weak) dimension of M OR
a

R

over R is equal to the homological (or weak) dimension of M over RA.

Proof; Given a resolution P- M- 0 over R,, POR R i M OR R- 0 is a

resolution of M OR R over R, since by 2.1, R is flat over RA. Again,

by 2.1, this resolution of M OR
a

R considered over RA contains P -> M - 0

as a direct summand, so that the homological dimension of M cannot decrease

on passing to M OR R.

From this, we are able to determine the global and weak dimen-

sions of a ring coproduct.

Theorem 2.11 Let R = uRA, where R0 is semisimple artinian, and each

RA is a faithful RD ring; then the right global dimension of R is equal to

the supremum of the right global dimensions of the RV provided that one

of them is not 0. If each RA is semisimple, however, the global dimension

may be 0 or 1. A similar result holds for weak dimension.

Proof: Consider any submodule of a free R module; by 2.2, it is an induced
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module. Moreover, by 2.1, if M = ® M QR R. each M is a submodule of a
u u u u

basic module, which are projective modules. From theorem 2.9, it follows that

the global dimension of R is the supremum of the global dimensions of the

Ru, provided that one of them is not semisimple artinian. If each of them

is semisimple artinian, it follows that the global dimension is at most 1.

Exactly the same proof holds for the weak dimension.

If R0 is a skew field, it is fairly clear that R cannot be

a semisimple artinian ring; however, this is most easily shown after we have

developed some more properties of the ring coproduct, so we shall deal with

this towards the end of the chapter. However, we present an example to show

that when R0 is only semisimple artinian, the ring coproduct may be simple

artinian.

Let RO = k x k x k, Rl =M
2

(k) x k, and R2 = k x M2 (k) , where

R + R by (a,b,c) I/a O , and
V

RO ; R2 by (a,b,c) ,(b 0

a O c

It is clear that Rl U R2 = M3(k).
RO

One can show by the same method that the coproduct of right semi-

hereditary rings is right semihereditary and a similar result holds for

X0-hereditary.

Before passing from the study of the category of modules over the

coproduct to the more particular study of the category of f.g. projectives,

we leave as an exercise for the reader the details of the next example, which

answers a question of Bergman.

Example 2.12 We wish to find an extension of induced modules that is not

induced.

Consider the free ring R = k<x,y> = k[x] k[y]. The module
k

R/xyR is an extension of the induced module R/yR by the induced module

R/xR, but it is not an induced module itself.

We start to look at the category of f.g. projectives over the
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ring coproduct. We already know all the objects of this category. We have

the next result.

Theorem 2.13 Let R = Li R., where RC is semisimple artinian, and each
R

RX is a faithful R
0-ring.
Then, a projective module over R has the

® PuaR R, where each P11 is a projective module over RP. The monoid of

isomorphism classes of f.g. projectives over R is isomorphic to the commu-

tative monoid coproduct of the monoids of isomorphism classes of f.g. pro-

jectives over RA, amalgamating the monoid of isomorphism classes of f.g.

projectives over R0. Consequently, K0(R) is the commutative group co-

product of KC(Rx), amalgamating KO(RC).

Proof: Every projective module lies in a free module and so must be iso-

morphic to an induced module by theorem 2.2. By theorem 2.9, we know that if

P= 0 MuR3, R, each M
u

must be a projective R
V

module.

Theorem 2.3 tells us that any isomorphism between two f.g. induced

modules is the composite of a finite sequence of basic transfers and trans-

vections followed by an induced map which, over R, is an isomorphism and

so must have been an isomorphism on each summand. Transvections do not alter

the form of an induced module; basic transfers simply amount to the amalgama-

tion of the images of P0(R0) in the different P49 (RA), which proves the

result for the monoids of f.g. projectives. The result for KO follows

since K0 is the universal abelian group functor applied to P®.

We should also like to have information on the maps between f.g.

projectives; that is, we should like to be able to explain all isomorphisms

and all zero-divisors over the coproduct in terms of the factor rings. We

already know how to explain all isomorphisms since 2.3 explains all surjec-

tions, so we look at the zero-divisors next.

Theorem 2.14 Let R = - R, where R is a semisimple artinian ring and
R0

each RX is a faithful R0-ring. Let a : P - P', and B : P' -> P" be maps

between f.g. projectives over R such that aB = 0. Then there exists a

commutative diagram:
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P.

II UI
eaOR S0R

ePa R 0P' a R 0P" R
u PRu u u Ru u RU

where each direct sum in this diagram is a finite direct sum of f.g. pro-

jectives and ausu = 0, for all V.

Proof: First, ims is an induced module by 2.2; so P' + im$ is a sur-

jection of induced modules, and by 2.3, there exists a commutative diagram:

P
a 6

P' P"

UI

eker6 a R=- a P' OR R 'sims a R = ims
u u u u u P Ru

So the problem is to replace kersu, and ims
u ,

by suitable f.g

projectives. ima' is a f.g. submodule of a kerb a R and so lies in an R-
u u

submodule generated by finitely many elements from kers u. Thus, there is

an induced map from e PIJRR to a kergua R, where each Pu is a finitely
11 P 11

generated free Ru-module, such that the image of this induced map contains

the image of a'. Since P is a projective module, we have a commutative

diagram:

P P' p"

II UI

e P a R
u u Ru u !' Ru u Ru

We miss out the bottom right hand corner of this diagram

(e imBuaRR); dualise the rest of the diagram and then fill in the bottomU

left hand corner of this diagram as we did in order to replace a kers a R.
u u Ru

The diagram we obtain is the dual of a diagram that suits our needs.

Universal ring constructions

These results on the coproduct construction allow us to study a
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number of interesting constructions on the category of f.g. projectives over

a ring. Given a k-algebra, S, the ring coproduct S . k[x] may be regarded
k

as the S-ring with a universal map on the free module of rank 1 that

centralises the k-algebra structure. Suppose that P1 and P2 are f.g.

projectives over the ring S; we are also interested in finding and studying

an S-ring, T, with a universal map from P
1
0
S
T to P

2
0
S
T that centralises

the k-structure. In the language of functors, we are trying to find the S-

ring in the category of k-algebras that represents the functor

S' i HomS1(P1aSS., P2aSS'). We say that an object 0 in the category C

represents a covariant functor F : C - Sets if F( ) is naturally equiva-

lent to HomC(O, ). We should like to investigate other universal construc-

tions; thus, we wish to find an S-ring, T1, in the category of k-algebras

with a universal isomorphism between P
1
0
S
T
1

and P20ST1. That is, T1

represents the functor that associates to each S-ring that is a k-algebra

the set of isomorphisms between P1aSS' and P2aSS'. Again, we should like

to find an S-ring, T2, that is a k-algebra with a universal idempotent map

on the projective POST2; that is, T2 represent the functor on the category

of S-rings that are k-algebras, which associates to each object S' the set

of idempotent maps on POSS'.

It is quite easy to see that there are rings with these universal

properties, essentially by generator and relation constructions. First, we

note that if A is an additive category such that every object is a direct

summand of Fn for some object F in the category, then this category is

a full subcategory of the category of f.g. projectives over the endomorphism

ring of F; F becomes the free module of rank 1. So, if we start off with

a ring R, and adjoin some set of maps to the category of f.g. projectives

over R subject to some set of relations, and construct the additive cate-

gory that they generate, the objects are still all direct summands of Rn

for suitable n, and therefore, the category is a full subcategory of the

category of f.g. projectives over the endomorphism ring of the object R1.

Clearly, there is a hanomorphism from R to this endomorphism ring E, which

makes E into the universal R-ring having this additional set of maps satisfy-

ing the specified set of relations. Clearly, the constructions in the preced-

ing paragraph all have this form, and we shall discuss in chapter 4 another

construction which may also be shown to exist by this method. For our purposes

in this chapter it is more useful to study them in a different way.

One construction of a slightly different nature that we wish to

study is the formation of the universal k-algebra T' with a universal homo-
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morphism from S to M
n
(T'). Here, T' represents the functor on the

category of k-algebras, Homk-alg(SIMn( ))'

The constructions on the category of f.g. projectives are all

approached in a similar way. We shall explain the case of adjoining a uni-

versal map between two projectives in some detail, and since the other cases

use similar arguments, we shall consider them more briefly.

Q1

Let 0 : R i S be a homomorphism between k-algebras, and let

and Q2 be f.g. projectives; then, if R' is the universal R-ring, and

k-algebra, with a universal map from Q1 to Q2, it is clear that R ' u S

R

is the universal S-ring and k-algebra, with a universal map from Q
1
a
R
S to

Q2aRS.

For suitably large n, there are orthogonal idempotents, ell

e2 in Mn(S), such that ei(nS) = Pi; under the Morita equivalence of S

and Mn(S), ei(nS) becomes eiMn(S), so it is enough to show that there

is an M(S)-ring with a universal map from e1Mn(S') to e2Mn(S') for an

S-ring, S', that is a k-algebra. Let e3 be that idempotent such that

e1 + e2 + e3 = 1 in Mn (S) ; we have a map k x k x k -+ Mn (S) given by
(a,b,c) -+ e1a + e2b + e3c, which makes Mn(S) into a faithful k x k x k-

ring. The projective module induced by the first summand of k x k x k is

e1Mn(S) and that induced by the second summand is e2Mn(S). It is easily

seen that the k x k-ring with a universal map from k x 0 to 0 x k is the

lower triangular matrix ring T2(k) =(k
0)

where k x k embeds along the

diagonal, and e21 induced the universal map. Therefore, the ring coproduct,

T (k) x k u M (S) is the universal M (S)-ring that is a k-algebra with
2

k x k x k n n

a map from e1Mn(S) to e2Mn(S). By Morita equivalence, we have a universal

S-ring with a universal map from P1 to P2. We shall use the symbol

T = Sk<a:Pl a P2> for this construction. We notice that it is made for

studying in terms of the ring coproduct.

Theorem 2.15 Let S be a k-algebra and let P1 and P2 be f.g. projectives

over S. Let T = Sk<a:Pl - P2> be the k-algebra and S-ring with a universal

map from P
1
a
S
T to P20ST; then T has the same global or weak dimension

as S except when the global or weak dimension of S is 0; in this case,

T has dimension 1. All f.g. projectives are induced from S; in fact,

the ring homomorphism from S to T induces an isomorphism P®(S) = P®(T).
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Proof: We retain the notation of the preceding discussion.

We see that Mn(T) = Mn(S) u T2 (k) x k; T2 (k) has global
kxkxk

and weak dimension 1, so that M
n
(T) has global or weak dimension equal to

that of S except when S has dimension 0, in which case, T has dimen-

sion 1 by 2.10. The monoid of isomorphism classes of f.g. projectives

over T2(k) x k is isomorphic to the monoid of isomorphism classes of f.g.

projectives over k x k x k, simply by the map induced by the ring homomorphism

described earlier; so, from 2.12, we deduce that P9(Mn(S) u T2 (k) x k)

k x k x k

P0(Mn(S), from which it follows by Morita equivalence, that P®(T) = P®(S).

The k x k-ring with a universal isomorphism between k x O and

O x k, is M2(k), where k x k embeds as the diagonal matrices; the elements

e21 and e12 are the universal map and its inverse. Therefore, if el and

e2 are orthogonal idempotents in Mn(S) such that ei S = Pi, the M(S)-

ring with a universal isomorphism between e1Mn(S) and e2Mn(S) is just

M (S) U M (k) x k, where the map kxkxk to M (S) is
2 nn k x k x k

(a,b,c) - ae1 + be2 + ce3, where e3 is 1 - e1 - e2, and kxkxk to

M2(k) x k is given by (a,b,c) -(a 0\ , c\ . By Morita equivalence, we

O b)

have an S-ring, T, which has a universal isomorphism between P
1
0
S
T and

P20ST, by taking the centraliser of the copy of Mn(k) in the first factor

of this coproduct. We shall use the symbol Sk <a,a-1:P1 - P2> for this ring.

Theorem 2.16 Let S be a k-algebra and let P1 and P2 be f.g. projectives

over S. Then T = Sk <a,a-1:P1 -> P2> has the same global or weak dimension

as S except when S has global or weak dimension 0. Here T may have

dimension 0 or 1. P®(T) is isomorphic to the quotient of P®(S) by the

relation [P1] = [P2].

Proof: We use the notation of the preceding discussion.

Mn(T) = Mn(Sk<a,a-1:P1

_). P2>) = M2(k) x k u Mn(S)

kxkxk

The global or weak dimension of Mn(T) must equal that of Mn(S)

if this not equal to 0, by 2.10. If it equals 0, however, it can be at
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most 1; we see that it may be 1 by adjoining a universal isomorphism between

kl and kl over k, obtaining the Laurent polynomial ring k[t,t-1 ]. On the

other hand, it may be 0, as we find for the ring k x M2(k), where we

adjoin a universal isomorphism between k x O and O x e11M2(k), obtaining

M3(k).

For the last statement of the theorem, we note that P®(M2(k) xk)

is the quotient of P®(k x k x k) by the relation [k x O x O] = [O x k x O];

since P®(Mn(T)) is the commutative monoid coproduct of P®(M2(k) x k) and

P®(Mn(S)) amalgamating P®(k xk xk), we find that the result holds for

P6(Mn(T)), when we adjoin universal isomorphisms between e1Mn(S) and

e2Mn(S). The result holds for P®(T) by Morita equivalence.

Next, we deal with the adjunction of a universal idempotent map

on a f.g. projective P. If we adjoin a universal idempotent map to the

free module of rank 1, over the field k, we obtain the ring k x k. There-

fore, if the idempotent e in Mn(S) satisfies e
n
S = P, the S-ring that

is a k-algebra with a universal idempotent map on P. Sk<e:P P, e = e2>

is obtained by taking the centraliser of the matrix units in the ring co-

product Mn (S) k x kk x k x k, where k x k maps to Mn (S) by

(a,b) - ae + b(l-e), and k x k embeds in k x k x k by (a,b) -> (a,a,b).
Once again, we may deduce homological information:

Theorem 2.17 The global or weak dimension of T = Sk<e:P ; P, e = e2> is

equal to that of S except, possibly, when the dimension of S is 0,

where T may have dimensions 0 or 1. P®(S) embeds in P®(T), and there

are two more generators [Q1], and [Q2] subject to the relation

[Q1] + [Q2] _ [PAST].

Proof: This may be left to the reader since it in no way differs from that

of the last two theorems.

It is clear that these constructions may be put together in a

number of interesting ways. One construction of some interest is the adjunc-

tion to k to a pair of matrices mAn and nBm such that AB = I
m

. We

call this ring, R. This may be obtained by adjoining universal an idempotent

n by n matrix, E, to k and then adjoining to this ring a universal

isomorphism between the image of E and the free module of rank m. We are

able to deduce that this is a hereditary ring and that it has exactly one
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new indecomposable projective, Q, up to isomorphism, and Q ® Rm Rn is

the only relation that it satisfies.

Our final construction is a k-algebra that represents the functor

Horn k-alg(S,Mn( )); following Bergman, we call this ring k<S -> Mn>.

Theorem 2.18 Consider the ring T which is the centraliser of the first

factor in the ring coproduct M (k) u S. Then k<S -> M > T.
n k n

Proof: Given a homomorphism 0 : T - A, we have homomorphisms

S -> Mn (k) u S ° Mn (T) -> Mn (A)

which determines a homomorphism 01 : S > Mn(A). Conversely, if we have a

map g : S -> Mn(A), we have a map g' : Mn(k)
k
S } Mn(A) that sends

M
n
(k) to M

n
(k) centralising A in M

n
(A) and acts as g on S. Restrict-

ing to the centraliser of the matrix units determines a map g : T - A.

These processes are mutually inverse, so they demonstrate the natural equi-

valence of Homk-alg
(T,

) and the functor Homk-alg (S,Mn( )).

Before we describe the homological properties of this construction,

we consider some of its interesting ring-theoretic properties.

Theorem 2.19 k<S -> M
n
> is a domain, and the group of units is just kx.

Proof: If a,b are in k<S - M
n
> and ab = 0, we may regard a and b as

endomorphisms of the induced projective module, P QM (k)(Mn(k) - S), over the
n k.

ring M (k) u S, where P is the simple module over M W. We write
n k n

R = M (k) -S in the following.
n k

By 2.14, we have a commutative diagram:

b
P'M (k)R- _ PAM (k)R

a
(k)Rn n n

FBOR aOR

Q1% (k)R PM (k)R Q2®M (k)R
n n n
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where S,a are defined over M
n
(k) and compose to zero.

We know that the middle term of the bottom row is PQM
(k

)R,

n
since this is the only representation of it as an induced module.

However, the only way that a pair of maps over Mn(k), B:Q1 - P,

and then a:P - Q2 can compose to zero for one of the maps to be zero itself,

which, in turn, implies that one of a and b are 0.

The result on units is a consequence of 2.3. If we have a unit

in k<S -- Mn>, it defines an automorphism of P®M (k) R; all basic transfers

and transvections must be the identity map on P% n(k)R; so, by 2.3, the

group of automorphisms of PAM (k)R over R mustnbe the group of auto-

morphisms of P over M
n
(k), nwhich is simply kx.

It is clear that the same argument shows that if

Mn(T) = Mn(D)D R, where R is a D-ring, D is a skew field, and the iso-

morphism sends the obvious set of matrices to the obvious set of matrices,

then T is a domain and the group of units of T is just
Dx.

This argument allows us to determine the global dimension of a

ring coproduct over a skew field.

Theorem 2.20 Let RO be a skew field and let R = U R where each R. is
RO

an R0-ring; then, the global of R equals the supremum of the global

dimensions of R except when they are all zero; then it becomes 1.

Proof: By 2.10, we have this result except possibly when the rings are all

semi-simple. Consider the ring of endomorphisms of an induced projective

module P®R R, where P is a simple module for the semisimple ring R.
A

The group of units is simply the group of automorphisms of the module and

by the same argument as in the last theorem we see that this is just the

group of automorphisms of P over RX. However, the ring of endomorphisms

of P&Ra R is larger than the ring of endomorphisms of P over R,, so

that this ring of endomorphisms is not a skew field. Therefore, R cannot

be a semisimple artinian ring since over a semisimple artinian ring, an

indecomposable projective module is simple, and so its ring of endomorphisms

must be a skew field.

We see that the global dimension of k<S - M
n
> is equal to that
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of S by 2.10, except when S is semisimple artinian in which case we may

apply 2.20 to show that it is equal to 1.

It is interesting to examine some of these constructions in the

category of commutative algebras. We shall not provide detailed proofs since

this last part is meant to be only illustrative.

We begin with a commutative ring C and a couple of f.g.

projectives P1 and P2 over C. We wish to find a commutative C-algebra

C[a:P1 + P2] that represents the functor on the category of C-algebras

A 3 HomA-mod (P10CA,P2QCA). The functor HomA(PlQCA,P20CA) is naturally

equivalent to the functor HorA((PloCP2)&CA,A), where PZ is the dual of

P2; but it is clear that the C-algebra representing this functor is just

the symmetric algebra on the module PlaCP2 over C. It is an immediate

consequence that this algebra is geometrically regular over C; that is,

for each prime ideal p of C,C[a:Pl i P2]aCQ(C/p) is a regular ring where

Q(C/p) is the algebraic closure of the ring of quotients of C/p.

We shall find that this holds for each construction examined and

we shall be able to obtain each construction in a sufficiently explicit form

to be able to determine the dimension of each geometric fibre over C. For

example, in the above example, the fibre over the prime p is

Q(C/p)[x13:i = 1 -- ml, j = 1 i m2], where mi is the local rank of Pi at

P_

We examine next the construction of adjoining a universal iso-

morphism from P1 to P2. This is only possible when the local rank of P1 is

the same as that of P2. If such is the case, P1 becomes isomorphic to P2

on a Zariski cover and by further refinement we see that there is a Zariski

cover which is the union of finitely many open and closed subspaces such that

the restriction of P1 to each of these subsets is isomorphic to the restric-

tion of P2 and both are isomorphic to free modules on each subspace. If on

a particular subspace the restrictions have local rank n, then the space of

all isomorphisms is a principal homogeneous space for GL n. Therefore, we see

that the fibre at a prime of C of the spectrum of the ring representing the

space of isomorphisms of P1 with P2 is just GLn(Q(C/p)), where n is

the local rank of Pi.

If we wish to adjoin an idempotent map e:P i P to C, it is

reasonable to specify the local rank of the idempotent also, which must be

constant on connected components and dominated by that of P. We may as well
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restrict to a situation where the local rank of P is constant and so is

that of the idempotent at n and m respectively. So we wish to represent

idempotents of rank m in EndA(PMCA). Over C, there is a Zariski cover

on which P becomes free of rank n. In a particular algebra, any two idem-

potents of rank m in M
n

(A) present free modules with free complement on

a suitable Zariski cover, so that with respect to the Zariski topology all

these elements are conjugate. Moreover, the centraliser of an idempotent

whose image is free of rank m and whose complement is free of rank (n-m)

is just M
m

(A) X M
n-m

(A); the consequence of this is that the set of idem-

potents of rank m in EndA(PQCA) becomes on a Zariski cover the functor

GL
n
/GL

m
X GL n-m. Since this last functor is geometrically regular, so is the

one we are interested in, and it is easy to check that the dimension of a

fibre is 2mn.
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3 PROJECTIVE RANK FUNCTIONS ON RING COPRODUCTS

The purpose of this chapter is to investigate how projective rank

functions behave under the coproduct construction. On the way we shall give

an application of this theory to the problem of accessibility for f.g. groups.

Also, we shall prove some interesting results on the behaviour of the number

of generators of an induced module over a coproduct. The main applications of

the results of this chapter will be to hereditary rings in the following

chapters.

The Generating Number on Ring Coproducts

When investigating partial projective rank functions on a ring

coproduct, R = R1 U R2, where RO is a semisimple artinian ring and R.
RO

is a faithful RO-ring, it is sensible to assume that it is defined on the

image of KO(RO) in KO(R). In this situation, we have the following lemma:

Lemma 3.1 The partial projective rank functions on a ring coproduct

R = R1 - R2 where R
0

is a semisimple artinian ring and R. is a faithful
RO

R0 -ring, that are defined on the image of KO(RO) in KO(R) are given by

pairs of partial projective rank functions (pl,p2) where pi is a partial

projective rank function on R. defined on the image of K0(R0) such that

they induce the same projective rank function on R0.

Proof: This is clear since by 2.12, we have a push-out diagram:

KO(RO) ± KO(R1)

1 !

KO(R2) } KO(R)

We shall usually describe a partial projective rank function of
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this type by the pair (p1,p2) of partial projective rank functions where

p, is defined on R..

We wish to show that the inner projective rank of a map

a:P -r Q defined over R1 with respect to a rank function p is just the

same as the inner rank of c R:POR R -> QQR1R over R = R1 U R2 with
1 1

Ro

respect to the projective rank function (p1,p2). In order to do this, we

need to investigate how the generating number with respect to a rank function

behaves under the coproduct. Before we do this we present a result that is

independent of rank functions.

In chapter 1, we have already encountered the notion of a ring

with unbounded generating number; that is, there can be no equation of the

form
mR1 m+1R1

® P. If however such an equation holds, a similar equa-

tion holds for all R1-rings, and in particular for a ring coproduct,

R = R1 u R2. So the number of generators of a module induced from R2 may
Ro

well change. We show that this is the only way that things can go wrong.

Theorem 3.2 Suppose that R
0

is a skew field, and R2 has unbounded

generating number, where R1 and R2 are R0-rings. Then the minimal number

of generators over R1 of the f.g. module M is equal to the minimal

number of generators of the module MOR1 R over R.

Proof: Suppose that MR R1 R may be generated by m elements over R; then

there is a surjection of induced modules a:mRl&
Rl

R -> MR
Rl

R. By 2.3, there

is an isomorphism S:P
1
9Rl R ® P

2 R1
R ->

MR,@
R1 R , which is a finite composi-

tion of free transfers and transvections such that the composite aB is an

induced map; that is, it maps P1 onto M and P2 to 0. We shall show

that P1 is an m-generator module and so is M.

We recall from theorem 1.4 that if R2 has unbounded generating

number, we have a well-defined partial rank function p2 on stably free R2-

modules. Since any stably free module has non-negative rank, the rank of a

free summand of a stably free module P is bounded by the rank p2(P).

If after a series of free transfers and transvections we have

passed from mRJOR
1
R to P1QR

1
R ®P 2®R1 R, we shall see that

Pl 6 p2(P2)R1 = mR1. We assume that this is true at the nth stage; if our



43

next step is a transvection, it alters nothing; if it is a free transfer

from P1 to P2 it is still true; if it is a free transfer from P2 to

P1 we can transfer at most p2(P2) factors, so it is still true. It is

true at the beginning so by induction it is true at the end.

We have shown the hard direction of our theorem; the other is

trivial.

We pass to the more technical versions we need for partial pro-

jective rank functions in general.

Theorem 3.3 Let R = R1 U R2, where R0 is a semisimple artinian ring and
R0

each R. is a faithful R0-ring; let p1, p2 be partial projective rank

functions for R1 and R2 respectively, defined and agreeing on K0(RD)

in K0(Ri). Let M1 and M2 be f.g. R1 and R2 modules respectively

with generating numbers m1 and m2 respectively with respect to p1 and

p2. Then the generating number of M1OR1R a M2OR1R with respect to (pl,p2)

is m1 + m2.

Proof: Certainly, it is at most ml + m2.

Conversely, suppose that we have a surjection over R,

(P1OR1R) $ (P20R2R) - (MIOR1R) 0 (M2OR2R), where p2(Pi) is defined. By

2.3, after a series of basic transfers and transvections on P1OR
1
R 6 P 20R

2
R,

we obtain an induced surjection:

PjOR
1
R ® P R R - MIOR

1
R ® M

2
QR

2

R

Since pi is defined on the image of K0(R0) in K0(Ri) and

agree there, the basic transfers produce modules on which pi is defined.

Since Pi maps onto Mil pi(Pi) ? mi, so the rank of P1aR R ® P2aR R
1 2

with respect to (pi,p2) must be at least m1 + m2.

At this point, it is of some interest to show how this theory

may be applied to provide a fairly simple proof of a result of (Linnell 83)

on accessibility for f.g. groups.

We begin with a summary of the background to the problem, and

refer the reader to (Dicks 80) for the details of the subject.

Let X be a finite connected graph with edge set E and vertex



44

set V; we allow the beginning re and end to of an edge to be the same

vertex. We label the edges and vertices of X with groups, and for each

edge e we have embeddings G -> G
Te

and G
e

-> G if
'

if Te = te, these

embeddings may well be different. This is known as a graph of groups; we

associate to this a group, the fundamental group of a graph of groups in

the following way.

Let T be a maximal subtree of X, which we regard as a subtree

of groups by the appropriate labelling of the elements of T; let v be a

vertex of T with only one edge, e, incident with it, so v = Te, without

loss of generality. We pass to the tree with one fewer vertex, T', obtained

by omitting a and Te, which we label by the same groups as before except

for the vertex, e, which we label with the group coproduct of G
re

and

G1e amalgamating Ge' Gre * Gte.
By induction, we eventually reach a single

point with a group GT associated to it, with a specified homomorphism

Gv -. GT for each vertex v such that GTe n G1e = Ge for each edge e in

T; clearly, GT is universal with respect to this property.

For each edge e in X - T, we have two embeddings of Ge in

G T, Ge -> Gre c -GT
and Ge - G e

c G
T

; so we form the multiple ANN extension

of GT over all edges of X - T with respect to these pairs of embeddings.

The resulting group, GX, is the fundamental group of our graph of groups;

it can be shown that it is independent of the maximal subtree chosen. Also,

if X' is a full connected subgraph of X, we may express GX as the

fundamental group of a graph of groups on X, where X is the graph obtained

from X by shrinking X' to a point. The groups associated to the elements

of X are the same as those in X for those that are not affected and that

associated to the point to which we shrunk X' is the group GX'.

In the following, we shall assume that edges groups are finite,

and also that if there is an edge e such that G = G or G = G
e Te e to

then re = te.

Given a f.g. group, G, we are interested in the various ways

of expressing G as the fundamental group of a graph of groups with finite

edge groups. It is possible to show that if G is the fundamental group of

a graph of groups on Xl and X2, then these two representations have a

common refinement, that is, there is a representation of G as the funda-

mental group of a graph of groups on a graph X such that the two preceding

representations arise by collapsing suitable subgraphs of X to points. So

the question arises whether there is a representation from which all others

arise by collapsing suitable subgraphs. If there is, the group is said to be
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accessible. This is equivalent to finding a representation where all the

vertex groups are neither HNN extensions over some finite group nor non-

trivial coproducts over some finite group. Since it is also easy to see that

the number of generators of the fundamental group of a graph of groups on a

graph X is at least E(X) - V(X) + 1 (consider the homomorphism to the

fundamental graph of groups on the graph X where all vertex groups and

edge groups are trivial, which is the free group on the stated number of

generators), we know that if the vertex groups keep on decomposing they

must eventually decompose only as coproducts over finite groups, so that we

shall only consider this possibility. It is clear that this cannot happen for

f.g. torsion-free groups since the number of generators of H1*H2 is the

sum of the number of generators of H1 and H2 by the Grushko-Neumann

theorem. In order to prove a more general theorem we need to find a substitute

for the number of generators that grows in a satisfactory way for the co-

product with amalgamation over a finite group. Linnell (83) was able to do

this for those groups whose subgroups are of bounded order; we shall present

his theorem, using partial rank functions instead of the analysis he used.

We noted in the first chapter, that on every group ring in

characteristic 0 there is a faithful projective rank function on f.g. pro-

jectives induced by the trace function. We are interested in the subgroup

KO(KG) of K0(KG) which is generated by the f.g. projectives induced up

from the subgroups of finite order, where K is a field of characteristic 0.

We shall denote by pf the partial projective rank function induced by the

trace on Kf(KG). If G = G1 * G2, then KG = KG1 U KG2; if F is a
GD KGO

finite group, then KF is semisimple artinian and we should like to show
f

that pf is just the partial projective rank function (p1 ,p2).

Lemma 3.4 Let G = G1 F GZ where F is a finite group; then Kf(KG) is

just the subgroup of Kf(KG) generated by the images of KD(KGi). Con-

sequently, pf is the partial projective rank function
(pI,p2).

Proof: If P is a f.g. projective induced up from some finite subgroup H

of G, we know that H is a conjugate of some subgroup H' of either G1

or G2; consequently, P is isomorphic to a projective induced from H' and

must lie in the image of Kf(KG1) or Kf(KG2). So Kf(KG) is generated by
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the images of KO(KG1) and KO(KG2).

Since pf and p2 agree on the image of KO(KF)1 lemma 3.1

shows that our last statement is true.

This result allows us to show Linnell's theorem; we shall use

the generating number with respect to p of the augmentation ideal of G

in KG to measure the size of G.

Theorem 3.5 Let G be a f.g. group such that the number of elements in

finite subgroups of G is bounded; then G is accessible.

Proof: We recall that it is sufficient to show that we cannot keep on decom-

posing such groups as a group coproduct amalgamating a finite subgroup in a

non-trivial way.

If G - G1 F*, G2, where IFI < -, we know that

wG = (wG1)G ® (wG2/wFG2)G ,

where wH is the augmentation ideal of a group H in KH.

KG = KG1 KG2 and it is clear from the above equation that wG

is an induced module. By 3.3 and 3.4, we see that

g.pf(wG) = 9.pl(wG1) + g.pz(wG2/wFG2).

and it is clear that if m is the bound on the order on finite subgroups of

G, then g.p2(wG2/wFG2) >_

m

.

Consequently, if g.pf(wG) = q, there is no decomposition of G

as the vertex group of a tree of groups with finite edge groups having more

than (m:q) vertices, which proves Linnell's theorem.

Sylvester projective rank functions on ring coproducts

We return to the general theory. Consider a ring homomorphism

0 : R-* S; suppose that we have a projective rank function on S, pS, in

inducing a projective rank function pR on R. We say that the map 0 is

honest with respect to the projective rank functions pR and pS if for any

map a : P -+ Q in the category of f.g. projectives over R, pR(a) = pS(anRS).
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This clearly reduces to the usual notion of honesty for firs (Cohn 71,

p.264).

Theorem 3.6 Let R = R1
R

R2, where RO is a semisimple artinian ring
O

and each R. is a faithful R0-ring. Let pi be projective rank functions

on R. that induce the same projective rank function on RO. Let

p = (pl,p2)
be the projective rank function they define on R. Then the

embedding R1 -> R is honest with respect to p1 and p.

Proof: Let a : P -+ Q be a map between f.g. projectives over R1. It is

clear that p1 (a) >_ p (° R1R).

So let M be a f.g. R-module such that a(P)@RlR c M C QQR1R.

By 1.10, we need to show that g.p(M) >_ p1(a).

By 2.8, the decomposition of M given by 2.7 has the form

M = (MOOROR) ® (M1QR1R) a (M2OR2R).

where a(P) c M1. By 3.3, the generating number of M with respect to p

is at least the generating number of M1 with respect to p1.

By 2.1, the embedding of R1-modules Q c QQR
1
R splits; so consider

the image of Ml, M', in Q under the splitting map. It contains the image

of P under %, so its generating number with respect to p1 is at least

pl(a). We have shown g.p(M) 2 g.p1(M1) >- g.pI(M') >_ P1(a), so

p(aQR1R) = pl(a), as we wished to show.

This result will be of great use to us later; for the present,

we give a couple of interesting consequences.

Theorem 3.7 Let R = R1
RO

R2, where R0 is semisimple artinian, and each

R. is a faithful RO ring. Let p = (pl,p2) be a projective rank function

on R. Then p is a Sylvester projective rank function if and only if each

pi is a Sylvester projective rank function.

Proof: Suppose that p i is a Sylvester projective rank function on Ri .

Consider a couple of maps a : P -+ P', and $ : P' } P" defined over R

such that a$ = 0. Then by 2.13, we have a commutative diagram:
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P
a P' $ P"

i i ii

where ai,si are maps defined over R. such that aisi = O.

By the law of nullity, pi(ai) + pi(6i) <_ pi(P'); summing, we

find that p(a) + p(8) <_ ip(ai) + pi(8.) p(P'), so that p is a Sylvester

projective rank function too.

Conversely, suppose that p is a Sylvester projective rank

function, and let a : P -> P', and B : P' - P" be maps between f.g. pro-

jectives over R1 such that as = O. Since p is a Sylvester projective

rank function, p(aQR1R) + p(SOR1R) 5 p(P'QR1R); but, by the last theorem,

p(a®R1R) = p1(a) for any maps defined over R1. So the projective rank

function pl is Sylvester.

Theorem 3.8 If R = R1
R

R2, where RO is a skew field, then R is a
O

Sylvester domain if and only if R1 and R2 are Sylvester domains.

Proof: This is an immediate consequence of the last theorem when we notice

that all the f.g. projectives are free of unique rank over R if and only

if this is true for each R..
1

We have seen in theorem 3.6 that if R = R1
RO

RZ for semisimple

artinian RO, and faithful RO-rings R1 and R2 and p = (p1,p2) is a

projective rank function on R, that full maps with respect to p1 remain

full maps with respect to p when they are induced up to R. In the case

where the rank functions are all Sylvester, we are able to prove that the

factorisations of a full map induced up from R1 to R over R essentially

come from R1.

Theorem 3.9 Let R = R1 R1 R2, where RO is semisimple artinian and each

R. is a faithful RD ring. Assume that p = (p1,p2) is a Sylvester faithful

projective rank function on R (and, in consequence, the same holds for p.
i

on R
i
,). Then, if aOR1R = Sy is a factorisation of a full map as a product
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of full maps over R, there is an invertible map, e, such that Be and

-1
C y are defined over R1.

Proof: Suppose that we have the factorisation over:

aOR1R
PAR R R1RB a

P'

where B,Y are full maps with respect to p, the rank function on R. So

p(P') = pl(P) = p1(Q).y must be an embedding, since it is a full map with

respect to a faithful Sylvester rank function. Since y(P') 2 a(P), we know

by 2.8 that the decomposition of y(P') given by 2.7 takes the form

Y(PI) = MOOR R) $ (M1OR 1R) ® (M2OR2R),

where a(P) 2 M1.

If one of
MO

or M2 is not zero, its rank with respect to the

relevant rank function is not zero; consequently, p1(M1) < pl(P) and so

aOR1 R could not be full since its image lies inside M OR
1
R. So

1

Y(PI) = MlOR
1
R.

Now all we need to do is to show that M1 E Q, for then we take

e to be the identification of P' with M10R 1R, and we see that Be is

the induced map ftR
1
R, where B is the map P -> a(P) E M1 and ey is

the induced map yOR
1
R, where y is the inclusion of M1 in Q.

Since p1(P) = p1(M1) and B is a factor of the full map a,

we see that B is a full map. We consider the map over R1

d:M
1

c_ QQR1 R + (QOR
1
R)/Q, and notice that Bd = 0; hence, since the rank

function is faithful 6 = 0, so that M1 E Q as desired.
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4. UNIVERSAL LOCALISATION

One of the first constructions developed in the theory of rings

was localisations for commutative rings as a way of passing from a commutative

domain to its field of fractions. When the theory of non-commutative rings

was developed, it was noticed that an analogue of this was possible for suit-

able sets of elements in a ring provided that they satisfied the ore condition.

This method was shown to be of particular importance when Goldie showed that

for a prime Noetherian ring the set of non-zero-divisors of the ring satis-

fied the Ore condition and the Ore localisation at this set was a simple

artinian ring.

One construction that was considered but rejected on the grounds

that at the time nothing could be proved about it was the construction of

adjoining universally the inverses to a subset of elements of the ring. Of

course, the ore localisation is a special case of this construction. However,

in studying the homomorphisms from rings to skew fields, Cohn was forced to

study a generalisation of this construction. He showed that the set of a

matrices over a ring R that become invertible under an epimorphism to a

skew field F determine the epimorphism; more specifically, the ring obtained

by adjoining universally the inverses to these matrices is a local ring L

whose residue skew field is F. Of course, the homomorphism R i L -r F is

our original epimorphism. For the first time, therefore, the construction of

adjoining universally the inverses of some set of matrices required serious

consideration; this was taken a step further by Bergman who considered the

construction of adjoining universally the inverses to a set of maps between

f.g. projectives.

By now, there is a powerful but secret body of knowledge about

this construction that is of fundamental importance for the study of homo-

morphisms to simple artinian rings. The purpose of this chapter is to present

this theory which has been substantially simplified and extended recently.

First, we shall give a simple existence proof for the construction;
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this allows us to develop standard expressions for the elements of the uni-

versal localisation together with a simple description of the equivalence

relation on these expressions given by their equality in the universal

localisation. This is based on and generalises work of Cohn (71) and

Malcolmson (83). Then we generalise an argument of Dlab and Ringel (84) to

find simple homological information on the universal localisation; this

allows us to give a very simple proof of a result of Dicks and Bergman (78);

a universal localisation of a right hereditary ring must be right hereditary.

Also, there is a short discussion of an interesting way to study the ring

coproduct in terms of the universal localisation of a suitable ring. In the

last section, we prove an exact sequence in algebraic K-theory that general-

ises the exact sequence of Bass and Murthy (67) for ore localisation.

Normal forms for universal localisation

Let R be a ring, and let P(R) be the category of f.g. left

projective modules over R; let E be some set of maps in the category; we

wish to construct a ring RE that is universal with respect to the property

that the maps R
E
a
R
a for a EE are invertible.

Theorem 4.1 Let R be a ring and E be a set of maps between f.g. left

projectives. Then there is an R-ring RE universal with respect to the

property that every element R
E
a
R
a for a EE has an inverse.

Proof: We use the observation that if we take the category of f.g. projectives

over a ring R, and adjoin a set of maps between various objects subject to

some set of relations and consider the additive category generated by these

maps and relations and our original category, then this is a full subcategory

of the category of f.g. projectives over the endomorphism ring of the object

that was the free module of rank 1 over R in our initial category. In our

case, we adjoin a set of maps a:Q - P for each map a:P ; Q in E and

adjoin the relations that as = IP, and as = IQ for all a in E.

Clearly the map from R to the endomorphism ring of the object

that was the free module of rank 1 over R makes this ring into an R-ring

with the correct universal property. We shall call this ring RE. It is

clear that the category of modules that we have constructed consists of the

f.g. projectives over RE that are induced from such projectives over R.

Now that we have shown the existence of this construction, we
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should note that there is no difference between adjoining universally the

inverses of maps between left f.g. projectives or between right f.g. pro-

jectives since we adjoin an inverse to a:P Q if and only if we adjoin

an inverse to
ax:Qx

+
Px.

We have shown the existence of the universal construction, but

this does not allow us to show in special cases that the ring we have is non-

trivial; therefore, we need a concrete representation of the elements of the

ring together with a way for determining when to such representations are

equal; this is our next goal.

First of all, we show that every map in the category of induced

f.g. projective modules over a universal localisation R£ of R may be

represented in the form fyg, where f, g and y are maps defined over

R and y =

c
where each a

i
. This is clearly true for induced

maps and for the maps a:Q + P for each a:P + Q, where a is in E.

If f1y11g1 and f2y21g2 are both maps from RE0RP to REQRO,

then we find the equation

f1Y1 91 - f2y2 g2 = (f1 f2) O

YYO2-1

(-gl

1 1 1

2

if f1Y1191:RE 2
R
P
1
+ R

E
0
R
P
2

and f2Y21g2:REORP2 +
REORP3

are a couple of maps, then

-1 -1 .

flyl 91.f2Y2 g2
: REIRPl + REORP3

is given by

-1 Y -g f
1fly1g1.f2y21g2 = (f1 0)
0

Y2 2

2
g2

We see that every map must have this form since all induced maps

are got by successive composition or taking the differences of maps previously

found. The reason for considering such representations of the maps is that we

are able to write down a criterion for two such expressions to be equal maps
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in RE.

Theorem 4.2 (Malcolmson's criterion) Let R be a ring and E a collection

of maps between f.g. projectives over R. Then every map between induced

projectives over RE has the form
fy-lg

for maps f,g, and y defined

over R, and y = I for suitable ai e E; further,

O
n

f
1

y
1

1g1
= f

2
y

2

1g2
if and only if there is an equation where all maps are

defined over R.

We refer the reader to Malcolmson (83) for a proof in the case

where all elements of E are matrices over R; he only considers elements

of the ring RE instead of all maps between induced projective modules; the

transformation to this present form is purely mechanical. The only apparent

difficulty arises from the fact that addition and multiplication are not

defined everywhere; however, a moment's thought shows that this causes no

problem.

There is another representation of the maps in the category of

induced f.g. projectives over R that is often useful for performing certain

calculations; this is a generalisation of techniques of John.

Theorem 4.3 (Cramer's rule) Let R be a ring and E a collection of maps

between f.g. left projectives. Then in the category of induced f.g. pro-

jectives over RE, every map a:RE0RP -> R
E
0
R
Q satisfies an equation of the

form:
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so ot' =s'
1-01)

where 8,a' are both maps defined over R, and where

ai a E, I is an identity map on a suitable projective, and a' is some map

over RE.

Proof: We use the generator and relation construction of the category of

induced f.g. projectives over RE given in the preceding discussion.

Certainly, for a in E, the element a satisfies

as=l

which is of the required form; for a defined over R, the equation

Ia = a

is of the required form.

Next, given ai:P -* Q i = 1,2 satisfying equations:

we find that for al - a2, we have the equation

al ai 0

o B. a

Bi 0

B2 s2

Finally, suppose that we have equations for i = 1,2,

a!
i

a. = ails

for maps a1:P1 + P2 and a2:P2 - P3; then we construct the equation
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a2 a2 0 o I

0 -al al al O

0

0 -al al

0'2

a2 a2 a2aia =2

a
1
a
2

Since every map in the category of induced f.g. projectives may

be obtained from the generators by these two processes of differences and

compositions, this proves the theorem.

Of course, in the last theorem there are no good reasons why the

representation of a in the equation a = a' should be in any way

unique. We shall see however that Malcolmson's criterion gives us a great

deal of control over such representations.

At this point, it is useful to introduce a pair of formal defini-

tions that we need later. We say that a set of maps E between f.g. pro-

jectives is lower multiplicatively closed if a, ae E implies that

(Y

0$) E E for arbitrary suitably sized Y. Similarly, we may define

upper multiplicatively closed. A set of maps E is said to be saturated if

every map between f.g. projectives over R that become invertible over RE

is associated over R to an element of E. We may define the lower and

upper multiplicative closure of a set of maps in the obvious way; it is

convenient to be more careful when defining a saturation of a set of maps

E: a saturation of E is a lower and upper multiplicatively closed set of

maps such that every map between f.g. projectives over R that becomes

invertible over RE is associated to an element of the saturation. For

Cramer's rule, it is useful to use lower multiplicatively closed sets of

maps and for Malcolmson's criterion it is better to use upper multiplicatively

closed ones.

We note the following consequences of Cramer's rule.

Corollary 4.4 All maps between induced f.g. projectives over RE are stably

associated to induced maps.

Proof: Simply look at the form of Cramer's rule.

Corollary 4.5 All finitely presented modules over RE are induced from
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finitely presented modules over R.

Proof: A f.p. module is the cokernel of an m by n matrix; by 4.4, this

is stably associated to an induced map between f.g. projectives, and co-

kernels are isomorphic for stably associated maps. So all f.p. modules over

RE are cokernels of induced maps. Let RE0Ra:RE0RP + RE2RQ be an induced

map; then by the right exactness of the tensor product, the cokernel of

RE®a is isomorphic to REOR(cokera) proving the result.

In particular, this applies to the f.g. projectives over RE;

however, we cannot conclude that all f.g. projectives over RE are induced

from R; for example, consider Z + 2M2(Z) c M2(Z); all f.g. projectives

are free; however, the central localisation of this ring at 2 is isomorphic

to M2(Z2), and there are some new projectives in this case.

One use of 4.4 is to show that iterated universal localisations

are in general universal localisations.

Theorem 4.6 Let E be a collection of maps between f.g. projectives over

R, and let E' be a collection of maps between stably induced f.g. pro-

jectives over RE. Then (RE)E, is a universal localisation of R at a

suitable set of maps between f.g. projectives over R.

Proof: Let a : P' + Q' be a map between stably induced f.g. projectives

over RE. Since P' and Q' are stably induced, there is an integer n

such that P' ® Rn and Q' ® Rn are both induced modules. Clearly, a is

stably associated to a ® In, which is a map between induced modules and as

such is stably associated to an induced map by 4.4. Consequently a is

stably associated to an induced map. Adjoining a universal inverse to a map

however has exactly the same effect as adjoining the universal inverse of a

map stably associated to it, so we may replace all the elements of E' by

a set E of induced maps that are stably associated to elements of E'.

(RE)E, is just (RE)I and this is clearly
REUE

.

Homological properties of universal localisation

Let E be a set of maps between f.g. left projectives over R.

It is clear that the homomorphism from R to RE is an epimorphism in the

category of rings, since there can be at most one inverse to a given map
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a:P -+ Q in the category of modules over a ring. Consequently, the category

of right RE modules may be regarded as a full subcategory of the category

of right R modules. It turns out that this subcategory has some interesting

properties that form the content of this section which were worked out with

Warren Dicks. Our next result is a development of an argument due to Dlab

and Ringel (84).

Theorem 4.7 The category of right RE modules is closed under extensions

in the category of right R modules. Therefore, Ext1R(M,N) = Ext11 (M,N)
RE

for RE modules M and N.

Proof: We may characterise the RE modules amongst the R modules by the

property that for each a e E, a : P - Q, and for each RE module M, the

induced map 1'%Ra:MQRP -+ MORQ is bijective. It is now clear that an exten-

sion in the category of R modules of a pair of RE modules must be an

RE module. It follows trivially that Ext1R(M,N) = Ext1R(M,N) for RE
E

modules M and N.

Our next result gives a number of consequences of the conclusion

of this result.

Theorem 4.8 Let R -+ S be an epimorphism in the category of rings; then

the following conditions are equivalent:

a/ Ext1 = Exti on left S modules;

b/ Tori(S,S) = 0;

c/ TorR(M,N) = Tori(M,N) for S modules M and N;

d/ Extl = Extl on right S modules.

Proof: a = B: let 0 - M - F + S -+ 0 be a short exact sequence of right

R modules where F is free. Then, we have the exact sequence:

1/ 0 -+ TorR(S,S) -+ MORS -+ FORS -+ SOBS = S -+ 0

we also have the push-out diagram:
2/ 0 -+ M -+ F -+ S -+ O

j II

O -+MMRS -+N-+S;O
by assumption, N must be an S module, and so, we may factor 2/ through

1/ in the following sense; we have a canmutative diagram with exact rows:

O -+ M -+ F -+ S+ O
II

0 -+ TorR(S,S) -+ M0+ S -+ F® S -+ S -+ 0
1 11 R JP- II

O -+ MGRS -+ N -+ S -+ 0



58

It follows that TorR(S,S) = O.

b c: let M be a right S module and let 0 -> A -* F -> M -+ 0 be an exact
sequence of S modules where F is free; then we have the exact sequence:

O = Torl(F,S) -+ Torl(M,S) -+ AM RS a Fe
R
S MGRS -+ O.

Since R -+ S is an epimorphism in the category of rings BORS = B for any

S module, B, so TorR(M,S) = O. Let N be a left S module, and let

0 -+ C -+ G -+ N -+ 0 be an exact sequence of S modules where G is free;
then

O = TorR(M,G) -+ TorR(M,N) -+ MORC -* M®RG -+ MORN -+ 0

is an exact sequence. For any left S module D, MORD is isanorphic to

me SD by the natural map since R - S is an epimorphism; therefore, the last

exact sequence shows that TorR(M,N) = Tori(M,N) for arbitrary S modules

M and N.

c 4 a: let 0 -+ M - A - N -+ 0 be an exact sequence of right R modules where
M and N are S modules; then because TorR(N,S) = 0, we have the

commutative diagram with exact rows:

O -+ M -+ A -+ N ; O
O -ML -+ ARS -+ NORS -+ O

M = MO RS and N = NORS, so by the 5-lemma A = AORS, which shows that A

must be an S module. It follows that ExtR = Exts on right S modules.

We have shown that a,b, and c are equivalent; by symmetry, d is

equivalent to them too.

In particular, a universal localisation satisfies all these

conditions. It is clear that an epimorphism satisfying the conditions of

theorem 4.8 need not be a universal localisation, since if I is an ideal

of a ring R such that I = 12, then Tor1(R/I,R/I) = 0, but R/I is

seldom a universal localisation of R.

The preceding results allow us to prove a theorem due to Dicks
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and Bergman.

Theorem 4.9 The universal localisation of a right hereditary ring is right

hereditary.

Proof: A ring R is right hereditary if and only if Ext1 is a right exact

functor in the second variable. If RE is a universal localisation of R,

then Exti on RE modules is isomorphic to Ext1 which is right exact in
E

the second variable. Therefore, RE must be a right hereditary ring.

Universal localisation and ring coproducts

There is a useful way to obtain the ring coproduct of two rings

amalgamating a common subring by considering a suitable universal localisa-

tion.

Theorem 4.10 Let A and B be R-rings; let T = A AORB and consider

O B

the map a : (0 B) + (A ARRB) given by left multiplication by CO 0

0

101

then Ta M2(A R B).

Proof: The elements
e11

(1 0),
e22

O O , a, and a-l of Ta form(O O( O 1)

a set of matrix units; the centraliser of these matrix units is isomorphic to

e11Tae11,
which is generated by a copy of A and a copy of B subject only

to the relation that R is amalgamated.

This has the following consequence.

Theorem 4.11 Let S1 and S2 be semisimple artinian R-rings for some ring

R: then S1
R

S2 is hereditary.

Proof: M2(S1
R

S2) is a universal localisation of the hereditary ring

2

S1 Sl'RS2

0
S
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Algebraic K-theory of universal localisation

We mentioned earlier that ore localisation is a special case of

universal localisation at sets of maps between f.g. projectives; in

particular, central localisation is a special case. Bass and Murthy (67)

found an exact sequence connecting the K-theory of R with the K-theory of

RS for a central subset S of R, from K1 down to K0, and later,

Gersten (75) was able to generalise this to a long exact sequence for

central localisation. Recently, Cohn (82) and Revesz (84) were able to cal-

culate the K1 of the free skew field and it was possible to rephrase this

as Revesz did in terms of an exact sequence connecting K0 and K1 of the

free algebra with the K-theory of the free skew field. Here we shall find

a common generalisation of the Bass-Murthy result and the Cohn-Revesz theorem.

The reason for proving such a result lies not just in allowing us to calculate

K1 of a universal localisation, but also in its giving us a way of quantify-

ing Malcolmson's criterion.

First of all, we define a useful category; the definition of this

category is very natural in the context of universal localisation though

rather less obvious in the Ore case. Let R be a ring and E a collection

of maps between f.g. projectives such that R embeds in RE. Let E be a

collection of maps between f.g. projectives that become invertible over RE

such that all maps between f.g. projectives over R that have inverses in

RE are associated to some map in E; clearly, Rf is just R. Further,

all elements of E are injective because of our assumption that R should

embed in Let T be the full subcategory of the category of f.p.

modules over R whose objects are the cokernels of elements of E. This

category is independent of our choice of E and is closed under extensions

in the category of modules over R, since E may be chosen to be lower

multiplicatively closed.

Theorem 4.12 Let R be a ring and E a collection of maps between f.g.

projectives such that R embeds in RE; let E and T be as we defined

in the foregoing discussion. Then there is an exact sequence,

K1(R) K1(RE) K0(T) } KO(R) i KO(R

where r and u are induced by the ring homomorphism, t is given by the

map [? ] + [Q] - [P], where 0 - P
a

Q ± Ma - 0 is an exact sequence, and

a is an element of E, and s will be defined in the course of the proof.
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Proof: Throughout this proof, M6 will denote the cokernel of a.

Let a:P -)- Q be an isomorphism between induced f.g. projectives

over RE; by Cramer's rule, we have an equation:

6 (0,

al
= B'

a

where S and S' are defined over R and a1 is defined over RE. Since

and
\0

all -are invertible over RE, so is y', so it is associated to

an element of/ E. We attempt to define a map from such an invertible map

to KO(T) by s(a) = [MS,] - [Ms]. We need to show that this is well-

defined and its restriction to automorphisms defines a homomorphism from

K1(RE) to KO(T). Assuming that we have proven this, it is not too hard to

complete the proof of the theorem, so we shall demonstrate this first.

1 Exactness at K0(R)

Certainly, to = 0; for given Ma a T, t([Ma]) = [Q] - [P],

where Ma has a presentation 0 ; P i Q } Ma -*'0; since a becomes an iso-

morphism over RE, u(Q) - u(P) = O.

Conversely, if u([P2] - [P1]) = 0, we have an equation over

RE, R
R n; so there is an isomorphism

between induced f.g. projectives a:RE0R(P1 ® Rn) I REgo R(P2 ® Rn), and so,

by Cramer's rule, we have an equation:

s

(I. al

= S'
O a

for maps defined over R, 8:Q' -> Q e P1 ® Rn, 6':Q' -> Q ® P2 a Rn, where

6,6' are associated to elements of E (since a is invertible over RE),

a1 is some map defined over RE, and IQ is the identity map on Q.

Hence, t([MS,] - [Ms])

[Q] + [P2] + n - [Q'] - [Q] - [P1] - n + [Q'], which is [P2] - [P1],

so that we have exactness at this point.

2 Exactness at KO(T)

Let a:P -* P be an isomorphism on an induced f.g. projective.

Then we defined s(a) _ [Ms,] - [Ms], where we have an equation:
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6
IQ

al

B'

O a

where 8 and 8':Q' + Q ® P are both associated to maps in E. So we find

that

st(a) = [Q] + [P] - [Q'] - [Q] - [p] + [Q'] = 0 .

Conversely, suppose that t([Mal ] - EM
a2

]) = 0; then if we have

a.

presentations 0 - P. a Q. -> Mi + 0 for i = 1,2 , 1Q1] - [P1] _ [Q2] - [P2],

so for suitable n, we have an equation, Q1 ® P2 ® Rn = Q2 ® P1 ® Rn. We

s.
construct from this, presentations for M1 and M2 O + pi + Qi + Mi + O

for suitable P and Q. This is easy for
a 81$I

0 + P1 $ p2 $ Rn 1 + Q1 9 P2 ® Rn + M1 + 0 is a presentation for Ml

n
I®a2$1

n
and 0 + P1 ® P2 $ R + P1 ® Q2 9 R + M2 + 0 is a presentation for

M2.

Consider the map over RE defined by
62181:RE8RQ + REIRQ.

1Because 82(62 61) = B11 we see that s(6 281) _ [MB ] - [M6 ] = [Ma] - [Ma ].
1 2 1 2

So we have shown exactness at KO(T).

3 Exactness at K1(RE)

This is rather harder to show than the previous two parts.

Certainly, rs = 0; for, if a:P - P is an automorphism over

R, the equation l.a = a satisfies the condition of Cramer's rule, so

rs(a) = EM ] - EM I = O.
a a

Conversely, suppose that a:P + P is an automorphism of an

induced f.g. projective over RE such that s(a) = 0; we have an equation:

Q

al

= B'
O a

where 8:Q' - Q ® P, B':Q' + Q ® P are associated to elements of f and

we deduce that 0 = s(a) = [M8,] - [M8].

We wish to show that the class of a in K1(RE) lies in the
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image of KI(R) in Kl(RE), and our equation shows that the class of a

in K1(RE) is equal to that of B-ls'; so we need to examine what it means

if [Ms] = [MS,] in KO(T).

category

We define a recursive relation

E, that amounts to the relation

We start our recursive relation

X = Y; next, if X - X', and Z - Z' and

O-+X->Y-+Z->O, and 0-X' ->Y' -Z' -+
if we have the first exact sequence, and in

exact sequence 0 -+ Z' - Y' -+ X' -+

M(O°

M

(O

O; X -+Y -+Z + O
O -+ X' -+ Y' } Z' - 0, then Z - Z'; and if we have exact sequences

O-+X-+Y-+Z;O
O - Z ' - + Y ' - + X' - * 0 , then Z ^- Z' .

We repeat these operations as often as they apply, and finally we

make sure that the relation is transitive by defining that if X - X' and

X' - X", then X - X".

We examine what this means in the category T; that is, we

attempt to find the equivalence relation defined on the maps by Ma - M$ for

a, 8 in E.

Ma = M$ if and only if a is stably associated to

Next, if X - X', and Y - Y', and we have exact sequences

first operation for generating the equivalence relation on the modules induces

the relation on maps that if M - M,, and M
a a y

M(O' M a

(0 Y

O\

M , then
Y
Our second operation for

generating the equivalence on modules induces the relation on maps that if

M - M
'

, and
a a

MY ... MY , .

We have that MS - MS,

- on the objects of

[X] _ [Y] in KO(E).

an exact

by defining that X - Y,

we have exact sequences

if

0, then Y - Y'; similarly,

place of the second we have the

0 we extend the relation to Y - Y'.

$. Our

then

for the maps B and B':Q' -+ Q 0 P,

we know that we

described above

can pass along some chain

to show this equivalence;

for suitably large m and n,

associations that occur in this chain are

of simple operations of the type

by passing to
S

0
I and

0 Im/I

we may assume that any stable

so

actually associations. We wish to

show that this equivalence on maps forces the image of 0'-16 in KI(RE)

to lie in the image of K1(R) in KI(RE).
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If a,a':P1 -r Q1 are associated over R, the class of the map

a:Ql -+ Q1 over RE in K1(RE) clearly lies in the image of K1(R).

If a.,a!:P. -). Q, for i = 1,2 satisfy a.la':Q. - Q. lies

in the image of K1(R) in K1(RE), then from the equations

al S I

0

I B al O al 0 0l O I O I 0

= () () ()O a2 O a2 O I O I , Y a2 0 I Y I O a2

and since the class of
1I I)

and
(I

0)
are trivial in K1(R£), we see

Y

S O \I
that the image of

al
a

in K(R£) is equal to the image of
al

(
O (

O a
2
) 1

2

/al O

and the image of I ). So we need to check that the image of
Y a2

(al
O )-1/al

0) in K1(RE) lies in the image of K1(R), which is clear.
1(0 a2

t0
a2

(0

1

Finally, if 1 a ) a lies in the image of K1(R) in
2 \

2

K1(RE) and
all al

does too, then so must a21a2, which shows that the

second operation generating the equivalence relation M
Y

- MY' preserves

the property that Y
_1Y'

lies in K1(R).

We are left with showing that our map s from isomorphisms of

induced f.g. projectives is well-defined and induces a map from K1(RE) to

KO(T). This is where Malcolmson's criterion is most useful.

Suppose that B:R?RP -. REQRQ is an isomorphism between induced

f.g. projectives and that we have two equations defined by Cramer's rule:

(aIa') (YIY1)( 62\ = (YIi')
0 S

and (alai), (ala'), (YIYl) and (YIY') are associated to elements of E;

then we know that
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(a al 0
I\O Yl Y

s l

s
B

Ca a O I a'

2 O Y1 Y Ys-s
= t

so, (0 0 0 I I) a a1 0 0 -1 a,

= 0
Y1 Y Yl Y'

by Malcolmson's criterion, we have an equation:

a al 0 0 0 0
a U1

j 0 Y1 Y Yl 0 0 Y U2

10 0 0 0 6 0
0 = U (v I T)

1
3

0 0 0 0 0 62 E
2

U
4

O O O I E
1

O O O

3 I

and r are associated to elements of E.

U4

From this, we construct two equations:

U1 0

1 /'2
I'

3
U4 O

O0

and also

a a
1

0 0 0 0 0

v 0 0 Y1 Y Yl 0 0 Y'
_ 0 0 0 0 d

1
0 0

0 0 0 0 0 6 0
O

I 2

0 0 0 I E1 0 0

a a

0

0 0

0

-a'

O

l
Y Y Y 0 0 0

O 0 0 O O 6 0
l

0
0 0 0 0 O 6

-E0
2

2

O O O I el 0 0

First of all, it is clear that RHS(1) and RHS(2) lie in E,

and [MRHS(1)]
=
[M61] + [M62] + CM(aal)] + CM(YY')]' whilst

[MRHS(2)]
=
[M61] + [M62] + [M(aa')] + EM(YYl)I.

If X,Y E E, [MXy] = [MX] + [MY] when XY is defined. Since
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Ov 01
lies in £,

ul 0

u2 Y'
u3 0 must be associated to an element in £ and

u4
0

0 0

[MLHS(1)] = [MU] + [MV] = [MU] [MV -T ]_ [MLHS(2)]

0 I

We deduce that CM(aaI + [M(YY')I = CM(aa')I + CM(YY1)], which

shows that s is well-defined.

We need to show that it induces a homomorphism from K1(R£) to

KO(T), and to do this, we need to show that s(o 0) = s(a), and

s(ay) = s(a) + s(y). It is convenient to show that
Ia

s 061 = s(a) for arbitrary al.

Suppose that we have equations:

7I g2\1 //I a3
(alai)

0 a
I= (ala') (Ylyl I (YIY')

then we find that /
\ 1

O 0

$3
0 a1 1 y yl

a al O
I

I a2 \0 0
O a

0
Y'

a a'

operating by a permutation matrix internally on the left hand side of this

equation does not alter [M

(

] in any way and allow us to change the
00100

00 aal

second matrix on the left hand side to the form /I 0 6 so

0 T R

0 0 a

2

l
s /I 61 = C Y Y

l

Y] CMY
Y1

0

0 ] _ [M(aa')] [M(aa )]
= d(B)

O a O Ol a a') (O Ol a al)
1

as we wished to show.

In order to show that s(ay) = s(a) + s(y), we first show it

under the assumption that a e T.
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s(I Y) s(By) by our last step; it is clear that s(SE) = s(E) if d is
06

an isomorphism over R; so we find that

s(BY) = s(I BY)
s(1 O)

I O O OIf (a al)

4o,l'
/B O\

Y
O a a )I 1

0
Y I(a

1 1 1

so s(B O) = [MB] + [M(aa,)] - EM(aal)] = s(B) + s(y), and

s(BY) = sY) = s(B) + s(Y)Finally,

we deal

IB /

withh the general case.

Assume (d1dl) 1 = (dld') then, by the last step,
O B\

s(d1d+s(0 BY) s (d1d1)
\O BY) = s (d1d') o -6YYSOW)W') + s(Y)

so s(BY) = s(1 B0O) = s(Y) + s(6 ') s(dd1) = s(Y) + s(B) which shows that

s induces a homomorphism from K1(Rto KO(T), and so completes the

proof of our theorem.

The Bass-Murthy sequence is a special case of this result; it

would be of interest to know whether this sequence may be extended to a long

exact sequence of K-groups for universal localisation as Gersten does for

central localisation. It appears very likely for special cases such as the

passage froma fir to its universal skew field of fractions. This leads to

the following conjecture for K2(F), where F is the free skew field on

some set X over an algebraically closed field, k. K2(F) should be
x

K2(k) x X k , where A is the set of stable association classes of full
A

matrix atoms over k<X>.
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5 UNIVERSAL HOMOMORPHISMS FROM HEREDITARY TO SIMPLE ARTINIAN RINGS

In this chapter, we shall prove our main theorems on universal

homomorphisms from hereditary rings to simple artinian rings; we shall find

that these arise as universal localisations at the set of maps between f.g.

projective modules that are full with respect to a projective rank function

that takes values in 1 Z. In doing so, we shall also develop techniques
n

for studying intermediate localisations, which generalise the results known

to hold for firs, and which will lead in later chapters to a detailed analysis

of the subring structure of these universal localisations of hereditary rings.

However, the most interesting result of this chapter in the short term is the

construction of the simple artinian coproduct with amalgamation. This is

given by constructing a universal homomorphism from the ring Sl S SZ to a
so

simple artinian ring Sl U S.,, where S. is simple artinian. In order to
O

assist the reader in understanding the method, we give a brief outline of

what we shall do in this case.

S1 S S2 is a hereditary ring with a unique projective rank func-
O

tion p by 3.1. We consider what maps between f.g. projectives have a chance

of becoming invertible under a suitable homomorphism to a simple artinian

ring; firstly, the homomorphism must induce the projective rank function p

on S1 S S2 since this is the only rank function. Therefore, if a:P - Q
O

is a map that becomes invertible under a homomorphism to a simple artinian

ring, p(P) = p(Q), and a cannot factor through a projective of smaller

rank; that is, a is a full map with respect to the rank function. At this

point, we consider the ring obtained by adjoining the universal inverses of

all full maps with respect to the rank function, since Cohn (71) has shown

that in the case where S. are all skew fields that the result is a skew

field; we are able to show in this case that this universal localisation is

simple artinian as we wanted it to be. We have been calling such constructions

by such names as the 'simple artinian coproduct' or the 'universal homo-

morphism from the hereditary ring R to a simple .artinian ring inducing the
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projective rank function p; we shall not justify these names immediately,

but in, chapter 7 when we discuss homomorphisms to simple artinian rings in

greater generality, we shall see that all other homomorphisms from hereditary

rings to simple artinian rings inducing the given projective rank function

are specialisations of the one referred to as universal.

In fact, the general method applies to constructing universal

homomorphisms from rings with a Sylvester projective rank function to von

Neumann regular rings, so we shall deal with this generality in the opening

stages of this chapter; we shall complete the discussion of homomorphisms

to von Neumann regular rings in the next chapter.

Universal localisation at a Sylvester projective rank function

Theorem 5.1 Let R be a ring with a Sylvester projective rank function p

having enough right and left full maps (see 1.16, and the following defini-

tion). Let E be a collection of full maps with respect to p between f.g

projectives: then the projective rank function p extends to a Sylvester

projective rank function on R, pE, that has the same image as p and has

enough right full and left full maps. The kernel of the map from R to RE

lies in the trace ideal of the projectives of rank 0.

Proof: First of all, we may assume that E is lower and upper multiplicat-

ively closed (see the discussion before 4.6), since all elements of the lower

and upper multiplicative closure of E are full with respect to p by 1.15

and become invertible in RE. The use of this observation is that it puts

us in good shape for both Cramer's rule and Malcolmson's criterion.

We prove the last statement of the theorem first, since it is a

simple step.

Let r e R be in the kernel of R -> RE; then, by Malcolmson's

criterion, we have an equation:

1

1 0 0 0
0 1 0 0
00a1 0
000 a2

1Os10

r
O _ al (d21 u)

O

S2

0

where ai,di e E and are maps defined over R.
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This shows that the nullity of LHS(l) is 1; by 1.15, and the

fact that l,al,a2 are full with respect to p, we may deduce that the

is 1, so that the nullity of r is 1, or that its innernullity of
(1l or)

projective rank with respect to p is 0, which implies that r must lie

in the trace ideal of the projectives of rank 0 with respect to p. So,

it is clear that RE is not the zero ring.

Cramer's rule and Malcolmson's criterion give representations of

maps over RE, and ways of characterising when two representations are the

same. We use these in order to define the rank of a map between induced f.g.

projectives over RE, and then to show that it is well-defined; then we

show that this rank function on maps between induced projectives is the

inner projective rank associated to a projective rank function that satis-

fies the law of nullity for these maps; it is not a hard step to show that

the rank function must actually satisfy the law of nullity for all maps

between f.g. projectives.

Given a map, S:RL RPl -> RE0RP2 between induced f.g. projectives,

Cramer's rule gives us an equation:

2 (aIal)
0

= (ama')

where (aal) EE, Q is a f.g. projective over R,1 is defined over RE,

and (aa') is defined over R.

It is clear that if p extends to RE, we should define

pE(S) = p(aa') - p(a) = p(aa') - p(Q) = p(aa') - p(aai) + p(P1)

The first definition shows that p(S) is non-negative, if it is

well-defined. Suppose that we have a second equation:

3

,a
(YIY1)

IQ

2 = (YIY')
o

where (yyl) E E, Q' is a f.g. projective over R,
S2

is defined over

RE, and (yy') is defined over R. Then, from (2) and (3) we construct

the equation:

4
al 0

yl y
(0,

a-a

sl

S = a10
S2

0 yl
Y

a'

Y'
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where I is an identity map on a suitable f.g. projective over R.

Over RS,, 0 = (0 0 0 I I)

5

(00100 -1 a'

O Yl Y Yl Y'

By Malcolmson's criterion, we have an equation:

a al O O 0

00 Yl Y Yl 0 0
00 00 61 O
0 0 O O O SZ

00 0 1 61 0

01:

_ (p /(v1 T)
O

`
O

where Si,p, v e E

We see that the right nullity of LHS(5) is p(P2). Since 61 and SZ are

al O O a'
full, we see from 1.15, that the right nullity of (aO Y1 Y Y1 Y' is p(P2).

0 0 O I O

In turn, we look at the bottom row of this matrix of maps and apply 1.15 to

deduce that the right nullity of ( Y1 Y Y is p(P2). Since P2 is the
1

codomain of (.,:) and al
0)

is clearly right full (because
(a al O O

Y O Y Y J O Yl Y Y
is full), we may write a minimal factorisation of

a
Y1 Y,) as:

1 /

6
(a0

Y1 Y
0 I

Y:) = (T2)

(XlIX2)

where p p(a al O ) = p codomain CO
al

2 pYlY Yl Y/I

and so X1 must be a full map. From (6), we construct two equations

7

2 0) 1

O)
Y

8
(T1 OY)

(ol
IZ)

(aO
Yl YI 0')

Using lemmas 1.15 and 1.13, we see that

P(act l) + P(YY') = p1 1 ,1 = P(aa') + p(YY1)
2 /
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Therefore, p(yy') - P(YY1) + P(P1) = p(aa') - p(aal) + p(P1) which shows

that our definition of pE is well-defined.

It is useful to show next that PE( S) = pE(a) + pE(R) and

that when as is defined pE(c ) PE(a),pE(R). /

So suppose that (YY1)(O a1) = (yy') and (661)(0 Si) = (66')

with the usual conditions obtained from Cramer's rule. Then, if aR is

defined we construct the equation:

= (6 61 0 6'

a1R 0 -y' y I O

aR

6 61 0 6 6 61 0 0
so PE(aR) = p - p + p(dom a);

O -Y' Y 0

'

0 -Y' Y Y1

f6 61 0 6' a' 0 -6
11

,
; so by lemma 1.14,pI 1= P

(0 -Y' Y O

P < p(66') + p(codom (yy')) therefore,

pE(a6) p(66') + p(codom(yy')) - p(661) - p(yy') + P(doma)

p(66') - p(661) + p(codoma) since (yyl) is full with respect to

p. Since codom a = dom R, pE(aR) 5 PE(R).

d' 0 -6
Again,

0(06
1

< p(yy') + p(dom (66')) and so we find
O y '

PE(aR) p(yy') + p(dom(66')) - p(661) - p(yyl) + p(dom)

p(YY') - P(YY1) + p(doma) = pE(a) since (661) is full.

For arbitrary a,R, we have the equation:

d

0 Y Y
0

0 0

Y Y1

0 0 0

R1

O d O O d'

O O y

Y.

O

a O
from which it is clear that p l p (a) +

p
(R)

EE 0 B)=
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Given a f.g. projective P over RE, we wish to define pE(P)

and the natural thing to do is to define pE(P) = PE(eP) where eP is an

idempotent map defined over RE on aniinduced f.g. projective R
E
Q
R
Q such

that the image of eP is isomorphic to P. We check that this is well-

defined.

If e,f are idempotents on REQRQ1, and RE6dRQ2 respectively

such that their images are isomorphic to P, there are maps a,s over

RE such that aR = e, and Sa = f; so pE(e)

pE(e) = pE(as) <_ PE(Sasa) = P"E(Ra) = PE(f) < PE(czaa) = PE(e) so that

equality must hold and pE(P) is well-defined.

It is easy to show that the rank pE that we have defined on

maps between f.g. induced projectives is the inner projective rank function

with respect to the projective rank function pE that we have just defined

on f.g. projectives over RE. Consider the diagram:

RE`RPl
a

R
E
Q
R
P
2

where Q is some f.g. projective. Let Q = (REORP)e; then a = Sey for

suitable maps S:REIRP1 - RE®RP, y:RE®RP -> RERP2. So, 0,(a) 5 PE(e) = PE(Q);

conversely, we recall that the definition of pE(a) gives us an equation:

I- a
9 (S B1) ( P 1 = (S S')

\\ O a)

where the usual conditions of Cramer's rule hold, and, by definition,

PE(a) = PO B') - P(P).

Let (S S') = yd, y:P' + P", d:P" - P'" be a minimal factorisa-

tion of (S g'); then

I- O I -a
10 P )= (S

S1)-ly p 1

0 a 0 I

consequently, REORP' = (REIRP) 0 Q, REORP" _ (RE0RP) ® Q" and also,

RERP "' = (R ERR P) ® Q; and partitioning (10) according to these decompositions
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over R, we fin d the equa tion:

I- O I- E I- I- O I- 0
P P 1 p 1 P P

0 a E2 E3 2 3 ul 112 Vl
V2

so, over RE, a = 112V2 where 112:Q but we have the equations:

P(V) = p(P") - p(P) = p(S p(P) = p(a), which shows that p on maps

between f.g. induced projectives is the inner projective rank function

associated to the projective rank function p, and also that there are

enough right and left full maps with respect to this rank function for maps

between induced projectives.

Let a:REORPl 3 REORP2 and 6:RE&RP2 + REORP3 be a pair of

maps between f.g. induced projectives such that as = 0; we have the usual

equations deduced from Cramer's rule:

(Y Y1)

then

0

a

Sl = (06 6i 0 6')
als -Y' Y 0

a6

d dl O O -1 d'

so 0 = as = (0 0 011) by Malcolmson's criterion

0 -Y' Y Yl O

we have an equation over R:

12

S(0,

(Y Y') . (d dl) 1 = (d d')

s

/a al 0 o /I
O -Y' Y Yl

I

d 6i 0 0 0 0

0 -Y' Y Yl 0 0

0 0 0 0 E1 0

0 0 0 0 0 E2

00 0 0 I
m l

6'

0

0

a ) (V2 ) = (t

0

where Ei,u,v lie in E; so the right nullity of LHS(12) = p(P3). Since

el and E2 are full, we deduce from 1.15 that the right nullity of
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d 6l 0 0 6' is p(P3) and, in turn, the right nullity of

O -Y' Y Y1 0

0 0 0 I 0

(O

-Yl
Y

0')
is p(P3); so, because (

0

-61
is is right full,

Y' /

6 61 0 )P 6 61 0 6')=pI

(0 -Y' Y O O -Y' Y

We see from 1.14 that

d 6' O -61 d 61 O 6' d dl O
P(6 6') + P(Y Y') < P = p1 = P

O0 Y Y' \0 -Y' YO 0 -y' y
P(6 61) + (Y Yl - P (P1)

So PE(a) + PE(B) = P(6 6') - P(6 61) + P(P2) + P(Y Y') - P(Y Yl) + P(P1)

S P(6 6) + P (Y Y1) - P (P1) - P(6 61) + p(P2) - P (Y Yl) + p(P1) = P (P2) ,
which proves the law of nullity for maps between f.g. induced projectives.

Given an arbitrary map a:Ql -+ Q2 between f.g. projectives over

RE, we define pE(a) to be the inner rank of a with respect to the rank

function pE on f.g. projectives. If a:Q1 - Q2,
B:Q2 Q3 are maps such

that a6 = 0, we find induced f.g. projectives such that RP = Q. ® Q'

for i = 1,2,3; then
(0 O) : Q1 ® Q1 - Q2 ® Q.

(O 02

0)
:

Q2 ® Q2 - Q3 ® Q2 ® (Q3 ® Q2) are maps between f.g. induced

Q'2

projectives such that
(cz

so
O O) (O OIQ1 0) -

0

+ PVE(Q) but
P2(00 0(O

)+P2B OIQ, 01_p(Q2)
2 //lI

IOQ O) = PE(B) +
pE(QZ) so we deduce that

PE(O O) =
PE(a)

' pE(01
01

0

2

pE(a) + PE(B) <_ pE(Q2) as we wished to show. So pE defines a Sylvester

rank function on RE.

Finally, we know that all maps between induced f.g. projectives

factor as a right full followed by left full map. So (C, 0 ) does (taking

the notation of the last paragraph) and it follows that a must since it

factors through (and0 0
1 has the same rank as IO O)'

It is useful to be able to prove that all f.g. projectives over
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RE are stably induced from R in the circumstances of theorem 5.1; this

is not in general true, but what does hold is sufficiently good for our

purposes.

Theorem 5.2 Let R be a ring with a Sylvester projective rank function p

having enough left and right full maps; let E be a collection of full

maps with respect to p; then any f.g. projective Q over RE satisfies

an equation of the form:

Q ® R ® QO = REaRP

where p(QO) = 0, and P is an f.g. projective over R.

Proof: Let e be an idempotent in Mm(RE) such that Rme = Q; then by

Cramer's rule, we construct the commutative diagram below:

R & S R y
RE0RPl E R RE0RP2 _ R

E
A
R
P
3

R a

REORS
11? eQ In E R 11th

m+n n m+n n

RE P
Q®RE

i RE P ARE

where a = ay is a minimal factorisation of a over R, p is the projec-

tion of Rm+n onto Q ® Rn and i is a left inverse to p.

The map Q ® Rn must'be surjective; moreover,

by the definition of pE, PE(Q ® Rn) = p(P2); so in the equation

R = Q ® RE ® QO ' PE(Q0) = 0, as we wished to show.
E'RP2

Incidentally, this shows that the rank function pE is the unique

extension of the rank function p on the image of KO(R) in KO(RE); for

if Q is an f.g. projective such that pE(Q) = 0, there is an equation

Q ® Rn a QO - REORP,
where p(P) = n, from which it follows that the rank

of Q under any rank function extending p must be 0; the equation proved

in theorem 5.2 for arbitrary Q shows that there is a unique rank function

extending p.

Let R be a ring with a Sylvester projective rank function p
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and let E
P

be the collection of full maps with respect to p; we call the

ring RE the universal localisation of R at p, and we shall in general
P

write it as R . In the case where p takes values in 1 Z, we are able
p n

to prove a great deal about such a ring.

Theorem 5.3 Let R be a ring with a Sylvester projective rank function p

taking values in 1 Z; then the universal localisation of R at p, R
n p

is a perfect ring with a faithful Sylvester projective rank function p and

all f.g. projectives over R
P

are stably induced from R. The kernel of the

map R i R is the trace ideal of the projectives of rank 0, and R -> R
P P

is an honest map.

Proof: We shall need the last half of this theorem in order to prove the

first part.

Since p takes values in 1 Z it is clear that there are
n

enough left and right full maps, so we may apply 5.1 and 5.2; in particular

RP has a Sylvester projective rank function PE taking values in

n

Z,

and the map R -> R
P

must be honest with respect to the pair of rank

functions p, pE.

Let P be an f.g. projective module over R
P

such that

PE(P) = 0; there is an idempotent e in Mn(Rp) such that Rne = P and

PE(e) = pE(P) = 0, so PE(In - e) = n. By Cramer's rule, we have an

equation:

(aI a1) (O
I-e) - (ala')

where (aa1) is a full map and (act') is defined over R; since In - e

has rank n, (aa') is a full map over R, and so, it is invertible over

RE; therefore, In - e must be invertible and so the identity map. Hence,

e = 0, P = 0, and pE is a faithful rank function. All projectives of rank

zero over R must be killed by the homomorphism, so by 5.1, the kernel of

the map is precisely the trace ideal of the projectives of rank 0. By 5.2,

all f.g. projectives over R
P

are stably induced from R. It is easy to see

from this that all maps over R
P

that are full with respect to pE are

actually invertible. For, if a:Q1 -).Q2 is a full map with respect to pE

over RP, there is an integer such that Q. $ Rn = RP®RP. and

a ® In:Ql ® Rn -> Q2 $ Rp is still a full map with respect to pE but this
P
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time it is a full map between induced projectives.

By Cramer's rule, we have an equation:

where (Sg1) is a full map over R and (BB') is defined over R; since

O
is full with respect to

(O I
p pEmust be full and so it is invertible

over R , which shows that a itself is invertible.
P

Next, we show that the descending chain condition holds on f.g.

left ideals over RP of bounded generating number with respect to p
E

;

clearly, this implies that R
P

is right perfect, and the left perfect

condition will follow by symmetry.

If there are any infinite strictly descending chains of f.g. left

ideals of bounded generating number, we choose one 10 Z) I1 Z) .... where all

modules have the same generating number, and this is minimal for such a

descending chain to exist. We find f.g. projectives with surjections

P. -> I. such that pE(Pi) is the generating number of Ii, and construct

the diagram below using projectivity.

I
1
0 D 11 D IZ ......

0.a0 P fa1 p2

Since Ii x Ii+l' the map we construct from Pi+l to P.

cannot be full since it is not even surjective so there is a projective Q,
i

such that pE(Qi) < pE(Pi) and ai factors through Qi; the image of Q,

in I. is a left ideal Ii containing Ii+1 of generating number strictly

less than that of Ii, which is contradictory since we may choose a strictly

descending chain of left ideals from the sequence {I'} such that all modules
1

have the same generating number less than that of the sequence {Ii}.

As noted before, this argument shows by symmetry that R is
P

also left perfect, so our theorem is complete.
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Constructing simple artinian universal localisations

Most of the time, we shall be able to deduce from this last

result that R
P

is actually simple artinian as we shall see in the next two

theorems. First of all, however, we give an example of a ring with a faithful

Sylvester projective rank function that cannot be embedded in a simple

artinian ring at all. We consider the endomorphism ring of the abelian group

C 2 ® C where Cn is the cyclic group of order n. This ring has two non-

p
trivial idempotents corresponding to projection on C 2 and C ; we assign

P
2

the ranks
3

to the first, and
3

to the second idempotent. It is a fairly

simple matter to check that this gives a Sylvester projective rank function

on the ring. It is clear that it cannot be embedded in a simple artinian

ring.

The next theorem was proven in a rather different way in

(Dicks, Sontag 78); we present it here as a simple corollary of the last

theorem.

Theorem 5.4 Let R be a ring with a Sylvester projective rank function p

taking values in 72; then R
P

is a skew field and the map R i R
P

is

honest.

Proof: We know that R
p

is a perfect ring with a faithful Sylvester pro-

jective rank function pE taking values in 72; let a,b be elements of

RP such that ab = 0; then by the law of nullity pE(a) or else, PE(b)

must be 0, which implies that a or b must be zero. So R
P

is a domain

and a perfect ring which forces it to be a skew field.

This is the classical case, and it is quite sensible to recall

at this point some of the examples to which it applies; all our examples are

firs, which have the unique rank function on the f.g. projectives since these

are free of unique rank. The free algebra on a set X, k<X>, is a fir, as

one sees by writing it as the ring coproduct k[xi] as xi runs through

X. We generalise this slightly to the ring E<X> generated freely by a set

X of E-centralising elements; this is a fir by the same argument. There is

a further generalisation of this example; let M be an E,E bimodule over

the skew field E; we may form the tensor ring on the bimodule M, E<M>,
n

which is a graded ring whose nth grade has the form Q M. It is shown in

(Cohn 71) that this is a fir. The unique universal localisation that is a
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skew field for these firs are written as EX), and

Our next theorem gives different circumstances under which R
P

is forced to be a simple artinian ring; this will be exactly what we shall

need to show that the simple artinian coproduct exists.

Theorem 5.5 Let R be a ring with a unique projective rank function p.

Assume that p is a Sylvester projective rank function whose image is

precisely 1 z; then the universal localisation of R at p, R is a
n p

simple artinian ring of the form Mn(F), where F is a skew field.

Proof: We know that R is a perfect ring such that all f.g. projectives
P

are stably induced from R; so any rank function on R is determined by
P

its values on the image of K0(R). There is a unique rank function on R,

so there is a unique rank function on R. If N is the nil radical of R ,

we know that R IN is semisimple artinian; since R has a unique rank
p p

function, RP/N must actually be simple artinian, and since the image of

the rank function is precisely 1 Z, and all projectives in R /N lift ton p
projectives over R, R /N must be M (D) for some skew field D. The

p p n
matrix units lift from RP/N to RP, so RP Mn(R'), where by Morita

equivalence, R' is a perfect ring with a faithful Sylvester projective

rank function taking values in Z, so, by the same argument as for 5.4,

R' is a skew field, which completes the proof.

This theorem applies well to the ring coproduct of simple artinian

rings amalgamating a common simple artinian subring.

Theorem 5.6 Let S1 and S2 be a couple of simple artinian rings with

common simple artinian subring S. Then S1 S S2 is an hereditary ring with

a unique rank function p. Therefore, (S1
S

52)p is a simple artinian ring,

the simple artinian coproduct of Sl and S2, amalgamating S. If

Si Mn (Di), for skew fields Di, (S1 S2) M(D), where
i P

n = l.c.m, fnl,n2}, and D is a skew field.

Proof: From 3.1, we know that S1 S S2 has a unique rank function p; if

Si Mn (Di), the image of p is precisely n Z so, by 5.5,
i

(S1 52)p = Mn(D) for some skew field D.
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Following Cohn's notation and terminology for the skew field co-

product, we call this ring the simple artinian coproduct of S1 and S2

amalgamating S and we denote it by the symbol S1 S S2. Of course, we may

construct the simple artinian coproduct of finitely many simple artinian

rings, Si, amalgamating a common simple artinian ring in exactly the same

way; for infinitely many Si, we have to be more careful. In this case, the

last theorem is proved in the same way provided that l.c.m.{n
i
} exists,

where S. = Mn (Di); when this does not exist, our universal localisation
i

at p exists but it will be a von Neumann regular ring, that is not simple

artinian.

Another generalisation of 5.6 that it is worth mentioning at

this point occurs if we amalgamate a semisimple artinian ring rather than a

simple artinian ring; by 3.1, we know that if a: '0 i Si, i = 1,2, are

embeddings of the semisimple artinian ring RO in simple artinian rings

S1 R S2 has a rank function if and only if al and a2 induce the same
O

rank function on RO. When there is a rank function, it is unique and we

may apply 5.5 to show that the universal localisation of S1
RO

S2 at this

rank function is a simple artinian ring, which we shall call the simple

artinian coproduct of S1 and S2 amalgamating R0, and write as

S1 S2. It is important to bear in mind that this exists only if the

same rank function is induced on R
0

by the maps from RO to S1 and S2.

Given a ring with a Sylvester projective rank function to 1 Z,
n

we have already seen that it need not arise from a map to a simple artinian

ring. However, if our ring is a k-algebra, we can show that there is an honest

map to a simple artinian ring inducing the given projective rank function.

Theorem 5.7 Let R be a k-algebra with a Sylvester projective rank function

p to 1 Z; then there is an honest homomorphism from R to a simple
n

artinian ring inducing the rank function p.

Proof: We saw in 3.1 that p extends to a projective rank function p on

Mn(k) k R, which still takes values in

n

Z; since the rank functions on

the factor rings are Sylvester, that on the coproduct must also be Sylvester

by 3.7, and the map R ; Mn(k) k R is honest by 3.6. Mn(k) K R = Mn(R')

and the rank function on the coproduct induces a rank function p' on R'

which takes values in Z. Consequently, by 5.4, we have a homomorphism from

R' to a skew field F that is honest and induces the rank function p' on
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R'. We have a map R + Mn(F) which is the composite of honest maps and must

be honest.

In particular, we consider when R is a k-algebra for a ring
P

R with a Sylvester rank function p taking values in
1

$; we see that
n

there is an embedding of RP in Mn(F) for some skew field F, so the nil

radical of R must be nilpotent of class at most n.

Intermediate universal localisations

Before leaving these matters for the time being, we shall develop

a few results on intermediate localisations of a ring R at some set of maps

full with respect to a Sylvester projective rank function p. We wish to

have useful criteria for the embedding of such rings in the complete localisa-

tion at all the full maps. This question is not immediately important, so the

reader may wish to skip these results until they are referred to later on.

If R is a ring with a Sylvester projective rank function p,

and E is a collection of full maps with respect to p, it is clear that

RP must be the universal localisation of RE at pE. So RE embeds in

R
P

if and only if pE is a faithful projective rank function. There is a

useful way of determining when this happens. We define a set of maps E to

be factor closed, if any full left factor of an element of E is invertible

in RE.

Theorem 5.8 Let R be a ring with a Sylvester projective rank function p

taking values in

n

Z; let E be a collection of maps full with respect to

p; then RE embeds in RP if and only if pE, the extension of p to

RE, is a faithful projective rank function, which is true if and only if the

lower multiplicative closure of E, E, is factor closed. The image of RE

in RP is always a universal localisation of R.

Proof: We have already seen the first equivalence. Next, suppose that pE

is a faithful projective rank function and let a e E, a = By where $,y

are full maps S:P 3 P', y:P' + P". Over RE, $ has a right inverse, and

so, REMR ' = REMRP ® coker(REQRS). pE(coker(REaR$)) = 0 so it must itself

be zero if the rank function is faithful, and, in this case, S has an

inverse.

Conversely, suppose that E is factor closed, and let e be an
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idempotent such that pE(e) = 0; we have an equation by Cramer's rule:

I I
$l(a al) -I _ (a a')

o e

where (aa1) a E; since pE(e) = 0, p(aa') = p(a), and we must have a

minimal factorisation of (aa') of the form (aa') = 6(YY) where the co-

domain of B has the same rank as the codomain of a; we have an equation:

Y 0 I
:1)

Y Y')
(B al)

/ \

= (6 al)
\-/O I O O

where (Sai) is a full left factor of (aal) and so, by assumption, is

invertible over RE; cancelling it over RE shows that e = 0, which shows

that pE is a faithful projective rank function.

We are left with the last sentence of the theorem; the image of

RE in RP is obtained by killing the f.g. projectives of rank zero, which

is the universal localisation of RE at idempotent matrices, whose kernels

are isomorphic to f.g. projectives of rank O. By 4.6, this is a universal

localisation of R.

It is clear that if R -> S is a ring homomorphism from R to

a simple artinian ring inducing a Sylvester projective rank function p, then

the set of maps E between f.g. projectives over R invertible over S is

factor closed and saturated; therefore RE embeds in R
P

by the last theorem

This remark gives us a useful sufficient condition for a localisation of a

ring at a set of maps full with respect to a Sylvester projective rank function

to embed in the complete localisation.

Lemma 5.9 Let E be a collection of full maps with respect to the Sylvester

projective rank function p over the ring R, and let RE - S be an

embedding into a simple artinian ring such that the composite map from R

to S induces p. Then RE embeds in Rp.

Proof: Let E be the collection of maps over R that become invertible

over S; then we have the diagram of ring maps:
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R-> R£-RRE -+ R

p
S .

The map from RE to S is an embedding, so RE embeds in R£ which embeds

in R
P

We can simplify 5.8 in the case that R is a weakly semi-

hereditary ring, since in this case, it is easily seen that a set of maps

full with respect to a projective rank function are factor closed if and

only if their lower multiplicative closure is factor closed.

Theorem 5.10 Let R be a weakly semihereditary ring with rank function p

taking values in

n

Z; let E be a collection of maps full with respect to

p; then RE embeds in RP if and only if E is factor closed.

Proof: It follows from 1.19 that £ is factor closed if and only if the

lower multiplicative closure of E is factor closed. 5.8 completes the

proof.

Finally, in the case of a faithful rank function on a two sided

hereditary ring, we know by 1.23 that we have unique factorisation of full

maps into finitely many atomic full maps. Consequently, a universal localisa-

tion at a factor closed set of maps is entirely determined by the full maps

that are factors of elements of the factor closed set. Further, if El,E2

are collections of atomic full maps such that any element of one is stably

associated to an element of the other, R
El

=- R E2. So, if we wish to classify

all the intermediate localisations that embed in the complete one, we can do

so by the sets of stable association classes of atomic maps that are exactly

those inverted in some universal localisation. We shall show next that any

collection is possible.

Theorem 5.11 Let R be an hereditary ring with faithful projective rank

function p taking values in 1 Z; then the intermediate localisations of
n

R that embed in the universal localisation RP are in 1 to 1 correspondence

with collections of stable association classes of atomic full maps.

Proof: We have shown everything except for the result that if E is a



85

collection of atoms then any atom invertible in RE is stably associated to

an element of E. In order to deal with this, we look at the maps we defined

in the proof of the K-theory exact sequence of chapter 4 for the universal

localisation R of R. Let T be the category of torsion modules with

respect to this complete localisation; we have a well-defined map from iso-

morphisms between induced f.g. projectives over RP to K0(T) and K0(T)

is the free abelian group on the set of stable association classes of atomic

full maps, and our well-defined map sends a full map a to [coker S].

Suppose that we have an atomic full map a:P -. Q such that a-1

exists in R
E

; then, we have an equation of the Cramer rule type,

a(a-1) = I, which shows that the image of a-1 in KO(T) is [- coker a].

However, by Cramer's rule for RE, we have an equation:

a

a

where B lies in the lower multiplicative closure of E, and B' is a

full map. So, the image of
a-1

is [coker g'] - [coker S]. Therefore,

since our map is well-defined, [coker a] + [coker a'] = [coker s]. Since

each side is a positive sum of generators of a free abelian group, and

[coker a] is a generator, it equals one of the generators involved in the

right hand side, which all have the form [coker ai] for ai in E; so,

a is stably associated to an element of E.

In the course of the proof of the theorems in this chapter, we

have often tried to prove that all the f.g. projectives over a universal

localisation are stably induced; it is often useful to be able to show that

all f.g. projectives are actually induced; we end this chapter with a considera-

tion of this problem.

Let R be a ring with a Sylvester projective rank function p

and let E be a collection of maps between f.g. projectives full with

respect to p; we say that E is factor complete if it is factor closed and

if a and S are maps defined over R such that as lies in E, there

exists a', a map between induced f.g. projectives over RE, such that

-/
is invertible over RE.

Theorem 5.12 Let R be a ring with a Sylvester projective rank function p;
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let E be a lower multiplicatively closed factor complete set of maps between

f.g. projectives; then all f.g. projectives over RE are induced from R.

Proof: Let e be an idempotent in Mn(RE); by Cramer's rule, there exists

an equation:

IP
1 (a a1)

O e) = (a
a')

where (a a1) a E, (a a') :PO -> P e Rn and (a a') is defined over R,

(a a'):PO ->P eRn.
Let (a a') = y(6 6') be a minimal factorisation over R;

y:PO -*-Q and (6 6'):Q } P e Rn; then (y a1)
\6

0) = (a al) so, by
factor completeness, there exists (Cl E2):RE&P'\ 3 REEORQ a R£ such that
Y al

E1 E2)
is invertible.

Counting ranks shows that p(P') = p(Q) + n - p(P0) and also that

p(Q) = p(P) + pE(e); therefore, p(P') = pE(e) + p(P) + n - p(P0) = pE(e).

We intend to show that there is a map from REaRP' onto Re,

and hence that they must be isomorphic since there are no projectives of

rank 0 by the factor closure of E.

First we rewrite 1 as:

6 0 I 6) (y a) (6 6'

(y
a

(O I,/\0 e= l 0 O

so

(y a ) (0 6S (y al) (0 68e

1 (O e - O (O e)= 0

= ek I
P

v)
E (O I O e

E
1

Z\0
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On the one hand,
E1

E2)

(O I )(0O e ) has image Rne since

l
1

bsl
is invertible; on the other hand, it is a map from

(e al \ l
1 2

REaR(PO ® P') vanishing on RE'RPO; so it defines a surjective map from

REORP' to Rne, which completes our proof.

We may refine this a little in the case where R is weakly

semihereditary.

Theorem 5.13 Let R be weakly semihereditary with a projective rank function

p; let E be a factor complete collection of maps between f.g. projectives

over R full with respect to p; then the lower multiplicative closure of

E, E, is also factor complete and so, all f.g. projectives over RE are

induced from R.

Proof: It is sufficient to show that if E is factor complete then

E2 = {(°l a I : ai a E} is also factor complete; the rest follows by
2

induction. So, suppose that (Y21(61 62) _
s( 1

01 then 1162 = 0, so by

the weak semihereditary property

J,

there exists a decomposition of

codom(y1) = dom(62) so that the product 1162 is trivially 0; we rewrite

the above equation with respect to this partition of codom(y1):

(Y21
Y22) (a'1211 622/ \S1 a2/

By factor completeness, there exists y' and y" such that
rY11)

and
1\ Y /I

(122)

Yll 0

are invertible: then Y21 Y22 is invertible.

Y ' 0
0 Y"

later on.

Finally, there is the following special case that we shall need

Theorem 5.14 Let R be a hereditary ring with a faithful projective rank

function p; let a:PO > P1 be an atomic full map with respect to p such



88

that if ima c Q c P
1

then ima is a direct summand of Q; then all f.g.

projectives over Ra are induced from R.

Proof: It is enough to show that {a} is factor complete; it is certainly

factor closed, and the remaining part of the definition of factor complete-

ness is trivial.
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6. HOMOMORPHISMS FROM HEREDITARY TO VON NEUMANN REGULAR RINGS

In the last chapter, we investigated the universal localisation

of a ring at a Sylvester rank function taking values in !-Z; the resulting
n

ring is always a perfect ring. Since the degree of nilpotence of the radical

may grow with the integer n, it is likely that if the rank function takes

values in the real numbers, we are not going to be able to say a great deal

about the universal localisation at the rank function in general. This

suggests that rather than investigating epimorphisms we should investigate

homomorphisms, and we shall see that every rank function on an hereditary

ring arises from a homomorphism to a von Neumann regular ring with a rank

function. Under suitable hypotheses we shall be able to show that the

universal localisation at the rank function is von Neumann regular.

In chapter 1, we showed that over a two-sided X,-hereditary ring

with rank function p, every map factors as a right full followed by a left

full map; we described this as having enough right and left full maps. We

shall require a complementary condition; we say that R has enough full

maps with respect to a Sylvester rank function p if every left full map is

a left factor of a full map and every right full map is a right factor of a

full map.

Theorem 6.1 Let R be a ring with a Sylvester rank function p such that

R has enough left full, right full and full maps with respect to p. Then

the universal localisation of R at p, R
P

, is a von Neumann regular ring.

All f.g. projectives over R are stably induced from R and the rank

function extends to RP. The kernel of the homomorphism from R to RP is

the trace ideal of the f.g. projectives of rank zero.

Proof: We have seen all of this result in 5.1 and 5.2, except for the fact

that R
P

is a von Neumann regular ring. To show this, we need to show that

every principal left ideal of RP is a direct summand of RP. Let a E RP
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then right multiplication by a is stably associated to some map RP®Ra,

where a:P - Q is a map defined over R. a = Ry, where a is right full

and y is left full. Since $ is right full, it is a right factor of some

full map which has an inverse over Rp, so Rp0RB has a left inverse,

that is, it is a split surjection. Similarly, R
P
db Ry has a right inverse,

and must be a split injection. The consequence of this is that the image of

RPQRa is a direct summand of RpQRQ, and so, the cokernel of RP®Ra is f.g.

projective. This is the cokernel of right multiplication by a, however, so

R a is a direct summand of R as we wished to show.
P P

Of course, it may be hard to check whether there are enough full

maps; however, we have already seen that over an Xo-hereditary ring there

are enough right and left full maps. We should like to be able to embed any

k-algebra with a Sylvester rank function p honestly in another k-algebra

with a Sylvester rank function such that the second k-algebra has enough

full maps. It turns out that we can do this by adjoining a large number of

generic maps.

Theorem 6.2 Let R be a k-algebra with a Sylvester rank function p taking

values in the reals; then the embedding of R in R V k<X>, where X is

an infinite set is an honest map for the rank functions p on R, and

(p,r) on the coproduct R v k<X>, where r is the unique rank function

on k<X>. Further, R k k<X> has enough full maps with respect to (p,r).

Proof: Since all projectives are induced from R, we take liberties with

the notation by writing P for (R k<X>)ORP, and p for (p,r). The

idea of the proof is a fairly simple one; let a:P -+ Q be a left full map

with respect to p , defined over R t k<X>. Then it is actually defined

over R k<Y>, where Y is a finite subset of X. We may use the elements

of X-Y to define a generic map from Q to P over R k k<X> and the

composition of this with a should be a full map with respect to p, since

any other answer would involve some kind of degeneracy. A dual argument deals

with right full maps.

There is some integer n such that both P and Q are re-

generator projectives, and neither is of rank n with respect to p; so

there are idempotents eP, eQ in Mn(R) such that RneP = P, and RneQ Q

so that our left full map a:P -> Q may be represented by a matrix
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a E Mn(R k k<Y>) such that epa = a = aeQ. For convenience in writing the

proof, we pass by Morita equivalence to the ring

Mn(R k k<Y>) k k[x] = Mn(R k k<Y>
k

k<xij>), where i,j = 1 and

the map sends x to the matrix (mi,). We call the ring Mn(R u k<y>)Rl,
13

and R1 k k[x] is called S. This may be regarded as a subring of

Mn(R
k

k<X>) by identifying the set {xi.: i,j = 1 -* n) with some subset
j

of X - Y. The rank function p induces by Morita equivalence, a rank

function pn on Mn(R k k<X>) which in turn induces rank functions that we

shall still call pn on R1 and S, and all maps mentioned above are

honest since all maps represent one ring as a factor in a coproduct over k

of the other. pn(R1ep), pn(R1eQ) < 1 since, by Morita equivalence, they

must be respectively p(P)/n and p(Q)/n. The element a represents the

left full map a:P i Q so that right multiplication by a is a left full

map with respect to pn from R
1
e
P

to R1eQ, and since the embedding of

R1eQ in R1 is split injective and so left full, right multiplication by

a defines a left full map from R
1
e
P

to R1; so for all left ideals of

R1 containing a, pn(I) >_ pn(R1eP).

Over the ring S = Rl k k[x] the map xeP is a kind of generic

map from R1 to R
I
e
P

so we consider the map axeP from SeP to itself,

which we intend to show is a full map over S; once we have this, we know

that it defines a full map over Mn(R
k

k<X>) by our remark that the inclu-

sion is honest, and so the map Morita equivalent to it over R k k<X> is a

full map having a:P - Q as a left factor. In order to deal with this, we

shall need the details of the coproduct theorems.

What we need to show is that any f.g. left ideal inside SeP

containing axeP has generating number at least pn(Sep) with respect to

pn. Let M be such a submodule of SeP; then, if gpn(M) <_ P(Se) < 1,

we find that in the decomposition given by 2.7, m = SokMO ® SoR M1 ® sok[x]M2'
1

where we take RO of 2.7 to be k, R1 to be RI and R2 to be k[x],

MO and M2 must be 0, for if not the generating number of M would be

greater than 1 by 3.3. Therefore, M = SoR M1.

We choose the basis l,x,x2...... for k[x] and order it by

1<x<x2<.... ; we well-order some basis for R1 over k containing the

element ep as smallest element. Then by theorem 2.7, M1 is the R1-sub-

module of M consisting of the elements whose 1-support does not contain

the 1-leading term of some non-l-pure element of M; if axeP E Mi, its
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1-support xeP must be the 1-leading term of some non-l-pure element of M,

and the nature of the ordering of k[x] forces the form of this element to

be xeP + rl where r1 lies in R1eP. However, M2 is empty, so xeP + rl

does not lie in M2 and we see that eP must lie in M. For, some element

in the 2-support of xeP + rl must be the 2-leading term of some non-2-pure

element of M. If this 2-leading term is eP, the element must actually be

eP since we chose eP to be the smallest element of a basis of R1. In

the contrary case we reduce the support of r1 obtaining xeP + r2. The

same argument applies but we cannot produce an infinite sequence of terms

xeP + rn where the maximal element in the support of rn continues to

decrease since our ordering is a well-ordering, so eventually eP is forced

to be in M, and therefore gpn(M) = pn(Sep).

This leaves the case that axeP lies in M1; we recall from

theorem 2.6 that the structure of Sep as an R1-module has the form

R
1
e
P
0 R1xeP 0 B, where B is a basic module. We project M1 onto the

direct summand R1xeP according to this decomposition. R1xep is a free

module on the generator xeP; the image of M1 contains axeP; we have

already noted that any left R1 ideal containing a has generating number

at least pn(R1eP) = pn(SeP), since a defines a left full map from R1ep

to R1; so the generating number of M1 is at least pn(R1ep) and so by

3.3 the generating number of M is at least pn(R1eP), which is just

pn(Sep), so that axeP must be a full map, as we wished to show.

This shows that every left full map over R k k<X> is a left

factor of a full map; the dual result must hold for right full maps by a dual

argument.

An immediate corollary of 6.1 and 6.2 is the following theorem.

Theorem 6.3 Let R be an Xo-hereditary k-algebra with a rank function p

taking values in the real numbers; then there is an honest map from R to a

von Neumann regular ring V with a rank function p v.

Proof: First of all, we form the ring coproduct R
k

k<X> which is
Xa-

hereditary by the remarks after 2.10, so, by 1.16, it has enough right and

left full maps; by 6.2, it has enough full maps. Therefore, by 6.1, the

universal localisation of R k k<X> at the rank function p is a von

Neumann regular ring V. The map R + R k k<X> and the map R k k<X> 3 V

are both honest, so their composite is also honest.
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We can say a little about the monoid of f.g. projectives of V,

when it is constructed in the manner used in 6.3.

Theorem 6.4 Let R be a ring with a Sylvester rank function p whose

image is the subgroup A of the additive reals. Let V be the universal

localisation of R k k<X> at the rank function p extended to R k k<X>;

then P®(V) is naturally identified with the positive cone of A.

Proof: Certainly, the image of p on V is the image of p on R k k<X>

by theorem 5.1, which is the image of p on R. The rank function induces

a map from P®(V) to the positive cone of A, which we wish to show is an

isomorphism.

Suppose that P and Q are f.g. projectives over V such that

pV(P) <_ pV(Q); then there are idempotents eP and eQ in Mn(V) where

n is a suitable integer larger than pV(P) such that Vne P P, and

VneQ Q. eP and eQ must lie in (R k k<Y>)p for some finite subset Y

of X.

We look at the ring

S = Mn(R k k<Y>)
k

kix7 = Mn((R k k<Y>) k k<xi.>) as in the last

theorem, which may be defined to be a subring of Mn(V) such that the

inclusion of it in Mn(V) is honest by taking {xij} to be a subset of

X - Y. The map from Sep to SeQ given by right multiplication by ePxeQ

is seen to be a full map by the argument of 6.2, if pV(P) = pV(Q); it is

left full if pV(P) < PV (Q). Full maps become isomorphisms over V, and

left full maps become split injective, so we see that if P and Q are f.g.

projectives of the same rank over V, they are isomorphic, whilst if P has

rank less than that of Q it is a direct summand of Q. The first statement

shows that the map from P®(V) to the positive cone of A is injective;

since all elements of A are differences of elements of the image of P®(V),

the second statement shows that the map is surjective.
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7. HOMOMORPHISMS FROM RINGS TO SIMPLE ARTINIAN RINGS

Introduction

Now that we have studied special homomorphisms from hereditary

rings to simple artinian rings, we are in a good position to study all poss-

ible homomorphisms from an arbitrary ring to simple artinian rings. In order

to see what type of theory to look for, we should look at the special case

of homomorphisms from an arbitrary ring to skew fields, which were classified

by Cohn in chapter 7 of (Cohn 71).

First of all, given a homomorphism 4:R + F from a ring R to

a skew field F, we can talk of the skew subfield of F generated by R;

then we regard two homomorphisms $.:R - F., i = 1,2, as equivalent if the

skew subfields of F,
i

are isomorphic as R-rings. We should like to be able

to characterise the equivalence classes in some way; this we do by using the

notion of the singular kernel of the homomorphism ¢:R + F; this is the set

of square matrices over R that are singular over F. Such a set of matrices

P must satisfy the following axioms;

1/ it includes all non-full matrices; these are the n by n matrices for

arbitrary n, that can be written as the product of an n by (n-1) and

an (n-1) by n matrix;

2/ 1 j P;

3/ (A

B)

e P if and only if A or B E P;

4/ if A = (a..) and B = (b..), A,B E P, and a.. = b i x k, then
1] 1] 1) i]

(cij) e P where cij = aij for i x k, and ckj = akj + bk,; similarly,

if aij = bij j x k, then (dij) e P, where dij = aij for j x k and

cik = aik + bik.

Any set of matrices over a ring satisfying axioms 1 to 4 is called

a prime matrix ideal; Cohn showed that the equivalence classes of homomorphisms
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from a ring to skew fields are in 1 to 1 correspondence to prime matrix

ideals, where an equivalence class is paired with the associated singular

kernel. We shall present a proof of these results later in this chapter.

There are two problems involved in a generalisation of this

theory: first of all, we cannot talk of the simple artinian subring of a

simple artinian ring generated by a subring since there need not be a unique

minimal simple artinian ring containing a given subring; therefore, we shall

have to find a new way to define an equivalence relation on homomorphisms

from a ring to simple artinian rings; secondly, we must find some analogue

of the prime matrix ideals that applies to simple artinian rings and not just

to skew fields.

The first problem can be met in a fairly simple way; Bergman

proposed that two homomorphisms f.:R -> S., i = 1,2, where S. is simple

artinian, should be regarded as equivalent if there is a commutative diagram:

where S is simple artinian. If there is such a commutative diagram, we

write ¢1 - 2. This relation reduces to the standard one if Si is a skew

field. This is easily shown to be an equivalence relation using the simple

artinian coproduct.

Lemma 7.1 - is an equivalence relation.

Proof: Certainly, it is reflexive and symmetric by definition. If we have

homomorphisms 4i:R - Si, i = 1 to 3, and
01 - 2' '2 - 031

we construct

a commutative diagram of ring homomorphisms:
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R
1

S

-S S O S,

S2

from which it is clear that - is also a transitive relation.

Next, we have to see what concept should replace the prime matrix

ideal. Here, we use an idea due, in the case of homomorphisms from a ring to

skew fields, to Malcolmson (80). If we have a homomorphism :R + S = Mn(E),

where E is a skew field, we can define a rank on f.p. modules over R by

the formula p(M) = ps(MeRS), which takes values in

n

Z. Such a rank

function must satisfy the following axioms, which simply express that SRS

is a right exact functor:

1/ P (R1) = 1;
2/ p(A ® B) = p(A) + p(B)

3/ if A - B - C - 0 is an exact sequence, p (C) <_ p (B) <_ p (A) + p (C) .

A rank function on f.p. modules satisfying these axioms is called a Sylvester

module rank function. Malcolmson (80) showed that a Sylvester module rank

function taking values in Z is equivalent information on the ring to a

prime matrix ideal. The main theorem of this chapter is that the equivalence

classes of homomorphisms from a k-algebra to simple artinian rings are in 1

to 1 correspondence Sylvester module rank functions taking values in 1 Z
n

for some n.

In order to prove this theorem and also to show how the notion of

a prime matrix ideal links with the concept of a Sylvester module rank func-

tion, we need another type of rank. A homomorphism from a ring R to a simple

artinian ring S also determines a rank on maps between f.g. projectives;

if a:P - Q is a map between f.g. projectives over R, we define

p(a) = p5(a&RS) where pS(S) for a map a between f.g. modules over S

is the rank as S-module of the image. A rank on maps induced by a homomorphism

to a simple artinian ring must satisfy the following axioms:
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1/ P(I1) = 1;

2/ P(G S) = p(a) + P(R);

3/ P(a R) > P(a) + P(S);
4/ P(aa) 5 p(a), P(R)

A rank function on maps satisfying these axioms is called a Sylvester map

rank function.

The notion of a Sylvester map rank function is equivalent to

that of a Sylvester module rank function in the following way. First, we

suppose that we have a Sylvester map rank function, p; we extend this to

a Sylvester module rank function by p(coker a) = p(IQ) - p(a) for a map

a:P + Q; next, we suppose that we have a Sylvester module rank function,

p, from which we define a Sylvester map rank function by

p(a) = p(Q) - p(coker a) for a map a:P + Q. It is not hard to check that

these functions are well-defined and satisfy the axioms required. As we have

seen, Sylvester module and map rank functions are equivalent notions; we

shall therefore usually refer to a Sylvester rank function, p, which is

defined on f.p. modules and on maps between f.g. projectives and restricts

respectively to a Sylvester module and a Sylvester map rank function.

In certain situations, we shall be able to construct a rank

function on matrices taking values in 1 Z for some n that satisfies axioms
n

1 to 4 for a Sylvester map rank function; we shall call such a function a

Sylvester matrix rank function. There is the following useful observation.

Lemma 7.2 A Sylvester matrix rank function extends uniquely to a Sylvester

map rank function, having values in the same subset of the additive group

of R.

Proof: Given a Sylvester matrix rank function, p, we define a Sylvester

module rank function by p(coker A) = n - p(A), where A:mR + nR. That

this defines a Sylvester module rank function is the same proof as was needed

to show that a Sylvester map rank function determines a Sylvester module rank

function. In turn, the Sylvester module rank function determines a Sylvester

map rank function that extends the Sylvester matrix rank function.

This allows us to see the equivalence between prime matrix ideals

and Sylvester rank functions taking values in Z in the following way. We
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construct from the prime matrix ideal, P, a Sylvester matrix rank function

by defining p(A) = n, where n is the maximal integer such that A con-

tains an n by n minor not in P; this determines a Sylvester rank func-

tion as we discussed before. Conversely, if we have a Sylvester rank function,

p, which takes values in Z we may define a prime matrix ideal by

P = {A: p(A) < n, where A is an n by n matrix}. We shall leave the

checking of the details to the reader.

Characterising the homomorphism by the rank function

We take our first step by describing our previous equivalence

relation on homomorphisms to simple artinian rings by the associated Sylvester

map rank functions. In order to do this, we need to find out more exactly

what a Sylvester map rank function induced by a homomorphism from R to a

simple artinian ring S tells us about the functor QRS.

We have already seen that a Sylvester map rank function determines

a Sylvester module rank function, and it is clear that this is the Sylvester

module rank function induced by the homomorphism from R to S, for if M

is an f.p. module over R with presentation P a Q + M - 0, then denoting

the Sylvester map and module rank functions induced by the homomorphism from

R to S by p, we have the equation p(a) + p(M) = p(Q) = p(IQ). We can

further determine the rank of M&RS for an arbitrary f.g. module M over

R in terms of the Sylvester module rank function. For every f.g. module M

can be represented as the direct limit of a family of f.p. modules {Ni}

where all the maps are surjective, and the rank of M&RS is equal to the

minimal rank of some NiaRS, that is, the minimal value of p(Ni).

Given a map between f.g. modules a:M - N, we may determine the

rank of anRS by the formula p(agRS) = p(coker agRS) = p(N®RS). Finally,

if we have a map a:M 3 N where only M is f.g., we can determine the rank

of n RS in the following way; we write N as the directed union of all the

f.g. submodules of N that contain the image of a, N = VN.; then the rank
7 J

of agRS is the minimal rank of the maps from M to N. for varying j

induced by a from M to N.

We see that if two homomorphisms +1:R i S1 and 2:R ; S2

induce the same Sylvester map rank function, then they must agree numerically

in all the ways determined above; as we shall see this happens because there

is a commutative diagram of ring homomorphisms:
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S1

R S
3

S2

where S3 is simple artinian.

Theorem 7.3 Let R be a ring with two homomorphisms ¢1:R -)- S1 and

2:R -)- S2 from R to artinian rings S1 and S2 that induce the same

Sylvester map rank functions; then there is a commutative diagram:

where S3 is simple artinian. Conversely, if there is such a commutative

diagram, S1 and S2 induce the same Sylvester map rank function on R.

Proof: The last sentence is clear, since they must both induce the same

Sylvester map rank function as S3.

We wish to find a non-zero homomorphism from the ring
S1 '9 S2

to a simple artinian ring. At first sight, this appears a hopeless task

until one notices that this is an hereditary ring, as will become clear in

a moment. After that, it is simply a matter of showing that the ring has

unbounded generating number.

In order to study the ring, we consider the upper triangular

matrix ring T = S1
S1aRS21

O S2

If we adjoin the universal inverse to the map a from 0 0

0 S2

to
IS1

SlaRS2/

defined by left multiplication by /0 laR1) the ring

1\O O (0 O

we obtain is isomorphic to M2(S1 R S2), as we saw in 4.10. Consequently,

S1 R S2 is hereditary, and by 5.1, it has a rank function (which must be

unique) when this map is full with respect to the rank function on T, p,



100

that assigns the rank / to both /00

0S1/

and

(
S1%'2`. If this

0

happens, the universal localisation of T a at the`rank

functi/on

is simple

artinian by 5.5; but this is a universal localisation of
M2(Sl R S2);

therefore, S1 R S2 has a simple artinian universal localisation. So, it

remains to show that a is a full map with respect to p.

First of all, we show S1%S2 is not zero. The rank of the map

YR 4- S1 as a map of R-modules is 1, where by rank, we mean the rank func-

tion induced by the homomorphisms to S1 and S2; we show this by consider-

ing the map obtained from it by tensoring over R with S1; we find

1'RS1.S1 -
S1aRS1;

composing with the multiplication map gives us the

identity map, so the rank of must be 1. Therefore, the map
01%S2

also

has rank 1 over S2; in particular Sl%S2 is non-zero.

We wish to show that a is a full map with respect to p. In

order to do this, we need to show that the minimal rank with respect to p

of an f.g. projective submodule of S1 S1&S2 containing the image of

O 0

a is /. So, we need to know what the submodules of S1 S1
S21

look

O 0

like. We leave it as an easy exercise for the reader to show that such a

submodule M takes the form (eS1 eS1QRS2 ® (0 M) where M is an

O 0 \0 O

S2-complement of eS1db
R
S
i

in S1%S2.

Consequently, its rank is equal to /pI(eS1) + /p2(M) where

pi is the rank of Si modules over Si.

Suppose that there is some submodule /eS1 eS1aRS2) ®( 0 M

0 0 0 0

of

C

S1

S1'RS2/

containing the image of a such that it has rank q less

0 0

than . Then consider the map y:R -)- (1-e)S1 which sends 1 to 1-e; over

S2 we find that the rank of y%S2:S2 -; (1-e)S1aRS2 is at most

2(q - /P1(eSI)), since the image of S2 lies in the image of M under left

multiplication by (l.e). So, the rank of yRSl:Sl -> (l-e)S1aRS1 is equal

to the rank of y®RS2 which is at most 2(q - /p1(eSI)).

That is, the image of S1 under yQRS1 in (1-e)S1%S1 lies

in some submodule M1 of rank over S1 at most 2(q - 4p1(eS1)); therefore,
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O 19RS1/ lies in (eSl eSIaRSl) 0(0 M1), inside the ring

O O O O O

S1 S1QRS1 . This shows that the rank of the map defined by left

O Sl

multplication by O 19
R
1 from (0 O to S1 S1R% S with

O O O S O 0

1

respect to the rank function that assigns these modules the rank / is at

most q, since its image lies in eS1 eS1aRSl ® (0 M1 whose rank

O 0 O O

with respect to this rank function is at most /p1(eSl) + q - /p1(eSI) = q.

However, it must be full, since it becomes invertible under the homomorphism

to M2(S1) given by o S1aRS1

i(Sl
S1)

where the map from SlQRSl to S1

is the multiplication map.

Therefore, we have a contradiction if we assume that a is not

a full map. So, Ta MZ(S1 R SZ) has a unique rank function by 5.2, and

the universal localisation of S1 R SZ is a simple artinian ring, which we

call the simple artinian coproduct of S1 and S2 amalgamating R, and

write as S1

R
S2'

Universal localisation and Sylvester rank functions

Our method for constructing homomorphisms from a ring to suitable

simple artinian rings will be to adjoin the universal inverses to some set

of maps between f.g, projectives; provided there are enough maps of a suitable

sort the ring we shall obtain will be local with simple artinian residue ring.

In order to prove these results, we shall need to investigate ways of extend-

ing Sylvester module and map rank functions from a ring to a universal

localisation of the ring. This theory allows us to prove Cohn's results on

homomorphisms from a ring to skew fields which we shall need in preparation

for the general case.

Theorem 7.4 Let R be a ring with a Sylvester rank function, p; let E

be a collection of maps between f.g, projectives over R whose rank is equal

to the rank of the identity map on the domain and codomain. Then, the

universal localisation of R at E, R£, does not vanish, and the Sylvester

map rank function on R extends to a Sylvester map rank function on R, pE,
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that takes values in the subgroup of the reals that p does.

Proof: Once we show how to extend p to RE, and show that this extension

is well-defined, it follows that RE does not vanish.

First, we note that we can assume that E is upper multiplicat-

ively closed, since the rank of all elements of the upper multiplicative

closure of E is equal to the rank of the domain and codomain.

As we have done in similar situations, we define the extension

of p to RE by Cramer's rule, and then, we show that it is well-defined

by Malcolmson's criterion.

Let S:RE0RP -+ R
E
a
R
Q be a map between f.g. induced projective

modules over RE. Then, by Cramer's rule, there is an equation:

IP, Ql
(a al)

o

We attempt to define pE(a) by pE(a) = p(a a') - p(P'). Suppose that we

have two equations of the above form:

(a al)

Then,

a al 0

0Yl Y
aal0
0YlY

so, by Malcolmson's criterion, there is an equation

a al 0 0 0 0

1 0 Y1 Y Yl O O

O 0 0 0 61 0

O 0 0 0 0 62

O O O I E1 0

IP,
1 = (a a' ) , (y )

Ip S2
(Y Y, )

0 / 1 0

From this, we construct two equations:
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a al 0 0 0 0

10 Y1 Y Yl 0 0

1. 0 0 0 0 61 0

0 0 0 0 0 62

p 0 0 I el 0

and

a al 0 0 0 0

l0 Y1 y 1 0 0

2. O O O 0 61 O

0 0 0 0 01 62

0 0 0 I E1 0

0

1

2

4 O

= p(X1) + p(X2), for arbitraryNote that if
Xl

lies in S, then p(x1 X2)

, since by axiom 4 for a Sylvester map rank function, it is at least that,

whilst

X

00)1 01G 1 X2/ \ol i \ I \0 X2/

so that axiom 2 shows that it cannot be greater. A similar argument applies

to show that p(X1) + p(X2) for arbitrary '. Since I X1X2 0
X2 \

is associated to

X

I ), we deduce that p(X1X2) = p(X2) whenever
X1X2

1\ 1////

is defined, and X1 C E.

So, p(LHS1) = p(6l) + p(62 + p(P) + p(aa1) + p(yy'); whilst

p(LHS2) = P(61) + P(d2) + p(P) + p(yyl) + p(aa')

But p(RHS1) = p(RHS2), since both O ) and (
IT)

lie in

E; so, p(RHS1) = p(LHS1) = p(LHS2) = p(RHS2). So, p(aa') - p(aa
1

) is

equal to p(yy') - p(YY1), from which it is clear that p is well-defined.

We have to be careful what we mean at this point since this rank function is

not as yet defined on association classes of maps over RE but only up to
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multiplication by invertible maps over R on the left. We shall however

show that our rank function defined on maps between induced f.g. projectives

over RE satisfies axioms 1 to 4 for a Sylvester rank function from which

it follows that it is well-defined on association classes of maps over RE.

It follows that it extends to a Sylvester map rank function since it restricts

to a Sylvester matrix rank function and so it extends to a Sylvester map

rank function by lemma 7.2.

Axioms 1 and 3 are clear, so we are left with 2 and 4 which are

rather less obvious.

al.

then,

First, we show that
p((I

E\OQ a

al
= pE(a) + p(Q), for arbitrary

Suppose that we have equations:

IQ

(RIsl)
of

Y Yl

00

0

s

We note that I 0 0 a" is associated to I 0 0 a"
Q2 Q2

O IQ3 0 al 0 IQ 0 a'
1

Q1

0 0 0 a

a

a 1)
(IQ2

= (BIB') , (YIYl) O

0 0 I93

0 0 0 a

s'

since (YY is in E. This equals p(Q3) + PE(a) as we stated.

Next, we show that pE(a6) <_ PE(a), PE(B) when a is an induced

map. Also, we shall show that if a is in E, then pE(a6) = pE(B).
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Let a:PO -> P1 be an induced map over RE, and let R:P1 _* P2

be a map between induced projectives over RE. Then pE(aR) + p(P1)

=p
P1

P1 R)
= p

E(R -IP
1 , where the last equations arise from

o
«)= pE(a

o o a

multiplication on the left by invertible maps over R.

If (Y Y1) IP' R1 _ (y Y') then
(o

Y Y1 0 IpI Bl O Y Y' -Y1
=

IQ' O IQ
-1l Y Y' 0

O - = ( 1 where Q'
(0 0 IP O 0 a 0 0 a 0 a /J 0 IP 0 IP

O

I

1 1

is the domain of (YY1

So, P

E(R -I - (Y Y. -Y1)

P - PCP') P(a) + P(Q') - PCP'
o a O 0 a

P(YY') + P(P1) - p(P'). Since (YY1 is in E, p(Q') = p(YY1) = P(P') + P(P1).

Therefore, we see that p(a) + p(Q') - p(P') = p(a) + p(P1).

we want.

So, pE(aR) + P(P1) =PEIO a) PE(a) + P(P1), PE(R) + P(P1) as

If we assume a is in E,

PE ( a) = P I O O a l/ - P (P' ) = P (YY') + P W - P (P' )

= P(a) + PE(R) = P(P1) + PE(R). Hence, PE(aR) = PE( a) - P(Pl) = PE(R)

In general, suppose that we have maps over R between induced

f.g. projectives a:PO + P11 and R:P1 -* P2. Suppose that we have an equa-

tion:

I a R I a R
then p (I ) + P (a R) = P P 1 PE (Y Y' P 1 PE (Y Y'P E E 0 aR (0 aR

< PE(YY') p(P) + pE(R) so pE(aR) <_ P(y ') - P(P) = PE(a), and

pE(aa) 5 P (R) which is axiom 2.

(Y Yl)
(IP al)

_ (Y Y')
O a

Let a1,a2 and a be maps over RE between induced f.g.

projectives such that (S1
a

is defined. Suppose that we have two equa-

tions: I\ 2)
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Then

I a' I a"

(Y Y1)
P1 = (Y Y') , (6 61) P2 = (S d')

O al 0 a2

0

(aloot2

I
a

O'
6 0 0 S1 I a' O

+ p (Pl P2) = PE O O a 0 - PE O 0 a 0

00602

0

y yl
0

O O Sl a2

P

0 Sls S'
P

Y Y. 0 0
= PE

O y
Y'

O
E

0 dls 6 d'
so that the problem reduces to the

case where al,a2 are induced maps.

So, suppose that we have an equation:

(e e1)

then p

P S1
= (e e')

B I S01 P . 0 o O
IPal O

E
+ p(P) = PE O al

0

= PE
S a ) ( )2 O S a 2 O S a

1
= P (

0 al EL0 Cl = El Oe 602) - P(

E 0 el P

O al 0
I O

0 0

2)

p(al) + p(a2) + p(IP

(e e1 OP a
2

which proves axiom 4.

We have shown that our rank function defined on maps between

induced f.g. projectives satisfies the axioms of a Sylvester map rank function.

It follows that it extends uniquely to a Sylvester map rank function as we

have outlined before.

In the case where the Sylvester map rank function on R takes

values in 2Z, we can say a great deal about the universal localisation of

R at all the maps between f.g, projectives whose rank is equal to the rank

of the identity map on the domain and codomain. In fact, we obtain Cohn's

classification of homomorphisms to skew fields.

Theorem 7.5 Let R be a ring with a Sylvester rank function p taking

values in Z; then the universal localisation of R at E, the collection
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of those maps between f.g. projectives whose rank is equal to the rank of

the domain and codomain is a local ring whose residue ring is a skew field.

The kernel of the map from R to the residue ring consists of those elements

which define maps of rank O. Therefore, the equivalence classes of maps

from R to skew fields are in 1 to 1 correspondence with the Sylvester rank

functions taking values in Z, or equivalently, with the prime matrix

ideals.

Proof: By the last theorem, we know that RE exists and p induces a

Sylvester rank function on RE taking values in Z. Let I be the subset

of RE consisting of those elements whose rank is 0; then it is an additive

subgroup because a + b = (1 1) (Oa 0) (1) and it is closed under

b 1

multiplication so it is an ideal.

If x is not in I, its rank is 1. Let (a al)
X

= (aa')

be some equation given by Cramer's rule; then because x has rank 1, (a a')

must be in E. So, x is invertible.

So, as we stated RE is a local ring with maximal ideal I, and

RE/I is a skew field. Clearly, the Sylvester map rank function induced by the

map R - RE/I is the one we began with. Conversely, if we start with a homo-

morphism from R to a skew field, R - F, inducing a Sylvester map rank

function p, there is a map from RE to F extending the map from R to

F, and the kernel of this map is I, for if a is in I, and a has non-

zero image in F, we consider some equation given by Cramer's rule:

(a a1) I x/ = (a a'). Since a has non-zero image in F, the left hand

side is invertible over F and so must be the right hand side; however, the

right hand side is not invertible, since its rank given by the map rank func-

tion induced by the homomorphisn from R to F is not equal to the rank of

the identity map on its domain and codomain. We have a contradiction, so I

lies in the kernel of the map from RE to F. Therefore, RE/I embeds in

F as the skew subfield of F generated by the image of R.

The remark on the kernel of the map from R to F is trivial,

since the map from R to F induces the Sylvester rank function p.

Ring coproducts and rank functions

In this section, we shall show how Sylvester module and map rank

functions on a k-algebra R may be extended to Sylvester module and map rank



108

functions on the ring Mn(k) k R. This will allow us to show that every

Sylvester module rank function on a k-algebra arises from a homomorphism to

a simple artinian ring by showing that the Sylvester module rank function

taking values in 1 Z extends to a Sylvester module rank function on
n

Mn(k) k R also taking values in n Z; Mn(k) k R is isomorphic to Mn(R')

for some R' and by Morita equivalence there is a Sylvester module rank

function on R' taking values in Z; we have shown that this is induced by

a homomorphism to a skew field, F, and this shows that the original rank

function must be induced by the homomorphisms: R + Mn(k) k R Mn(R') -r Mn(F).

It remains to find a way of extending the Sylvester map rank

function on R to one on Mn(k) k R. The idea is to mimic what we know the

result would have to be if there were a homomorphism from R to a simple

artinian ring S inducing our Sylvester map rank function. In this case, we

have homomorphisms: M (k)

k
R -> Mn(k)

k
S -> Mn (k) o S, which induce an

k
Sylvester map rank function on Mn(k) k R extending that on R. Given a

map a:P -> Q between f.g. projective modules over Mn(k) k R, the rank of

aa(M (k) o S) is the minimal rank of an f.g. projective module over
n k

Mn(k) k S containing the image of aQ(Mn(k) k S). It is hoped that this

discussion will help to motivate the definition we shall propose later on

for the map rank function on Mn(k) k R.

Unfortunately, before we can begin, we need to go through a

certain amount of technical work on coproducts over a skew field. Rather than

referring the reader to an earlier chapter, we shall reproduce some of the

definitions here; also, we shall prove one of the coproduct theorems here,

since it is precisely the technical details of the proof that we need to

examine.

Let R0 be a skew field and {RA:A u A} a family of R0-rings.

Set M = A u{O}. We form the ring coproduct R = R R and consider an
O

induced module which has the form N = e N R R. For each A, we choose a
u u u

right basis over R0 of the form {1} U T for the ring RA, and for each

u, we choose a basis over R0, Su, for N . Write S = US , and T = UT
u uu as

If t e TA, it is associated to A; if S E SA, it is associated to A;

if s E S0, it is associated to no index. A monomial is an element of S or

a formal product st1t2...tn , s E S and ti E T such that no two successive

terms are associated to the same index. Let U be the set of monomials; an

element of U is associated to A if and only if its last factor (in S or
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T) is associated to A. Every element of U is associated to some index

except for the elements of S0. We denote by U_X those elements that are

not associated to A. We recall again without proof theorem 2.4.

Theorem 2.4 Let all terms be as above. Then a right basis for N over RO

is the set U. For each A, N is the direct sum as RA module of N

and a free RA module on the basis U_A.

Given A and U E U_A, we denote by cAu:N * RX the RA

linear right 'coefficient of u' map given by the decomposition of the

theorem. For u e U, we denote by cou:N } R0 the R0 linear 'right co-

efficient of u' map given by the decomposition of N as R0 module in

the theorem. For A E A, the A-support of an element x of N is the

finite set of monomials in U-, such that cXu(x) is not 0; x has

empty A-support if and only if it lies in NA. The 0-support (or support)

of an element x consists of those monomials such that cOu(x) is not 0.

The degree of a monomial st1...tn is (n + 1), and the degree

of an element s of S is 1. The degree of an element of N is the

maximal degree of an element in its support. We define an element x in N

to be A-pure if all the monomials in its support of maximal degree are

associated to the index A. It is O-pure if and only if it is not A-pure

for any index in A.

We well-order the sets S and T in some way, and then we well-

order U by degree and then lexicographically reading from left to right.

Next, we well-order M, making 0 the least element. We well-order M x U

first by the degree of the second factor, and afterwards lexicographically

from left to right. Let H be the set of almost everywhere zero functions

from M x U to M well-ordered lexicographically reading from highest to

lowest in M x U.

Given any element x in N, its leading term is the largest

element in its support; its A-leading term is the maximal element in its A-

support (if it has any).

Given a homomorphism of f.g. induced modules a:$ M n R - N, we
u U Ru

wish to find an isomorphism g: ® M' R W M Q R of induced modules such
N Ru u U RL

that the image of a is isomorphic to ® (as)M'® R. It turns out that we
u

u
Ru

may find such an isomorphism composed of transvections and free transfer
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maps. In order to present the proof, we introduce following Bergman the

notion of a well-positioned family of submodules of N.

A family of R
u

submodules of N, {L
u
} is said to be well-

positioned if and only if the following conditions are satisfied:

AU: VIEM, all elements of L11 are U-pure;

BU1U2: the U1-support of LU1 contains no monomial u which is also the

U1-leading term of sane non-Ul-pure element xa, x in LP , a in R, and

if U1 =
U21

deg xa > deg x. 2

It is not hard to show that if {L } is a well-positioned family

ELUR is naturally isomorphic to ® LU®R R. The idea for the construction

of the isomorphism is that if {a(MU): p E M} is not a well-positioned family,

we find some free transfer or transvection s :e M' e R - ® M ® R so thatl U URU U 11R
{asl(MU): p E M} is a 'better positioned' family; by using the well-ordering,

we can make sure that this process terminates and so, it gives us the iso-

morphism that we were looking for.

Theorem 7.6 Let a: ® MU®R
u
R -+ N be a homomorphism of f.g. induced modules,

where N is as described above. Then, there is an isomorphism of induced

modules s: ® Mu0R R -- ® MU0R R which is a finite composition of free
u u

transfers and transvections such that {as(MU):U E M} is a well-positioned

family of submodules of N.

Proof: We associate to the map a a function ha:M x U a {0,1} by

h(p,u) =(1, if u is in the U-support of a(MU);

O, otherwise.

This is an almost everywhere zero function since M
U

is f.g. and is non-

trivial for only finitely many p.

Suppose that a(Mx ) is not X1-pure for some al; then there
1

is some a(x) in a(M) with A1-leading term u such that cXu(x) = 1;
1

the map c:M -> R
A1

is an R
x1

split surjection; so, M
x1

= ker c
x

e xR
1

x

where xR is free of rank 1. We perform the free transfer between
1

MU0R R and ® Mu0R R, where M' = Mx for A x al; M0 = MO e xRO;
u

M. = ker c It is the identity map on M' for A x A ; it maps M'al atl' a 1 0

to M0, maps ker cx u to ker cA u and sends x to x. It is clear
1 1

that if
Sl

is this free transfer, has :M x U -> {0,1} is a smaller function
1
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in the well-ordering of such functions that we described earlier.

If, however, a(M0) is not O-pure, there is some element a(x)

in a(M0) that is X1 pure with leading term u such that cOu(x) = 1;

MO = ker cOu e xRO; so, we perform the free transfer si: ® M' QRu R -r M
u R u

R,
U u

where M1 = MX, A z a1; MO = ker cOu; M'X = MX a xRX .S1 has the obvious
1 1

effect. Again, it is clear that has is less than ha under these condi-

tions. Therefore, after a suitable finite sequence of free transfers, we may

assume that each a(MU) is u-pure.

Next, suppose that for some pair u1,u 2, B

u

fails for the
ul2

family of modules {a(MU)}; that is, there is an element a(x) in a(MU
1

such that its ul-support contains a monomial u that is the
ul-leading

term of a non-ul-pure element a(y)a where y is in M. , a is in R,

2

and if ul = u2, deg (ya) > deg (y). We may assume that cu u((y)a) = 1.
1

We have a functional M11 - R11 given by cu
u

which we extend
1 1 1

to a functional on M = ® MUOR R in the way we described when describing

u

transvections. Left multiplication of this functional by ya now gives us

an endomorphism t of M of square 0; so $ = IM - t is an automorphism

of M which is a transvection. It is an easy check to show that has is a

smaller function than ha; therefore, after a suitable finite sequence of

transvections and (possibly more) free transfers, s = IIs; we may ensure
i

that {as(MU):u E M} is a well-positioned family of submodules.

Now we shall show that a well-positioned family justifies its

name.

Theorem 7.7 Let {M,,:u E M} be a well-positioned family of submodules in

N; then EM R = ® M 0 R in the natural way.
V u u R

Proof: Given u e M, we choose for each monomial u that is the leading

term of some element of M an element q in M11 having this leading term

with co-efficient 1; we denote the set of such q's by Q Q. It is clear from
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the well-ordering that each Qu is an RO basis of M. For each A E A,

and monomial u that is a A-leading term of an element of M0, we choose

an element q in M0 that has this term as A-leading term with co-efficient

1, and we denote the set of such q's by QOX. Every element of M0 has a

A-leading term so QOA is an RD basis of M0 for each X.

The elements of QX are associated to A, and the elements of

QOa
are associated to all indices in A - {A}.

We consider the set V consisting of all elements of the form

gtl...tn, where q lies in U(QAu QOA) and no two successive terms in the

above monomial are associated to the same index, together with UQ . We
11P

shall show that these elements in N have distinct leading terms, and so,

are rightly R0 -linearly independent. Therefore, they form an R0 basis of

EM R, from which our theorem is clear.
uu

By the well-ordering of U, the leading term of gt1...tn is

utl...tn, where q lies in QX and u is the leading term of q, or

where q lies in
QOA

and u is the A-leading term of q. So, we consider

an equality of the form utl...tm = u'ti...t' where m >- n; u comes from

q in M , u' from q' in M . Assume m = n; we obtain by cancella-
V2 ill

tion, u = u'. If q c QA, u is associated to A, so, q' E Q0, for

q' cannot lie in QX by construction. Therefore, q' is in Q0 or QOA'

for A' x A. If q' is in QoA, the support of q' E MO contains a mono-

mial u' which is the leading term of a pure element q in MA, which

contradicts BOX. If q' is in Q0, m = n = 0, and we obtain as above a

contradiction to BOX. The same applies if q E Q0.

If q is in QOA, then q' cannot lie in QA since m = n = 0;

so q is in QA,, A x V. Once more, we have a contradiction to BOA,.

So, m > n, and, by cancellation, we find utl...tm-n = U'.

Since q' is in M11 1, we see that if ul x 0, tm-n is in Tµl

so the u1-support of q' in M
ill

contains utl...tm-n (or u if

l

m = n + 1). This also is the u1-leading term of the non-u1-pure element

gtl...tm-n (or q if m = n + 1), which contradicts B . If ul = 0,
ulu2

then since the support of q' in M0 contains ut1...tm-n the leading term

of the pure element gtl...tm-n we again have a contradiction to B .

ulu2

This completes the proof, since we see that the elements of V
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are independent and span EM R.
P

U

Bergman also uses a direct way of finding well-positioned families

of submodules that generate a given submodule of an induced module.

Thus, let L c N; we define L to be the R submodule of L
u u

consisting of the elements whose U-support does not contain the u-leading term

of some non-p-pure element of L. By construction, the family {L
u
} is well-

positioned; it is not hard to show that L = EL R, which as we have just seen
uu

is naturally isomorphic to ® LVOR
u

R. In the case where L is a f.g. sub-

module, we may regard L as being generated by some finite family F of

f.g. RU submodules of L, {MU} = F; so, EMUR = L. To such a family, we

associate a function hF:M x U -' {0,1} by

hF(u,u) _ 1 if u is in the u-support of some element of M

O otherwise.

We shall characterise the family of submodules {L
u

} where L
u

is the set

of elements whose u-support does not contain the p-leading term of some non-

u-pure element of L by the property that the associated function is minimal

in the well-ordering of such functions.

Theorem 7.8 Let L be an f.g. submodule of N, where N is the module we

have considered throughout this chapter. Let L
u

be the R
u

submodule

consisting of those elements whose u-support does not contain the p-leading

term of some non-U-pure element of L. Then, the function hF associated to

the family of submodules F = {L
u

} is minimal over all possible finite

families of submodules that generate L.

Proof: Assume that we have a family with smaller associated function than

hF.

map

Given a family of submodules F1 = {M
u

} that generate L, we have a

a:$ MU0R R -* N whose image is L.

The proof of the last theorem showed that the method used there

of passing to a map a': 9 M ® R -* N
u u RU

such that the

is well-positioned always forces the function

So, we may begin by assuming that our family

Therefore, L = ®M
u
0R R in the natural way.

u

family F2 = {a'(M
u
)}

h to be less than hF2 F1.

{a(M )} is well-positioned.

Suppose that the u1-support of M contains the u1-leading
u1

term u of some non-p 1-pure element x in L. We assume that cUu(x) = 1.

We note that the degree of x is less than the degree of an element of M
ul
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whose u1-support contains u.

We wish to show that L = EM'R where M' = M u x u, whilst
uu u u

M' = B(M ) where S(m) = m - xc (m). So, a is the identity on elements
ul ul ulu

of degree less than equal to x.

Clearly, if F' = {M':u M}, h , < h , so, if EM'R = L, the
F F u u

well-ordering of our functions imply that after finitely many steps (which

may include more operations that change F' into a well-positioned family)

we reach a family F = {M
u
} where no element of M

u
contains the p-leading

term of some non-p-pure element of L, and EM R = L. Clearly, M = L
uu u u

Since our associated functions have decreased at each step, this will prove

our theorem.

We show that x lies in EM R from which it follows that this
u

must equal L. We use the notation of 7.7. We look at an expression of x

with respect to the R0 basis V. No elements of degree greater than that

of x can occur since all elements of V have distinct leading terms. So,

all elements in this expression of x must lie in EM R, since their term
uu

from Q either lies in Mu = M', for u x ul, or else it is fixed by g;

and so must x.

We can begin the proof that every Sylvester map rank function on

a k-algebra R taking values in 1 Z extends to a Sylvester map rank func-

tion on R' = Mn(k) k R that also takes values in

n

Z. Set R0 = k;

R1 = Mn(k); and R2 = R.

The first point to notice about a Sylvester map rank function is

that the rank of a map a:P - Q depends only on the image of a in Q;

for, if a':P' -> Q has the same image then a factors through a' and

a' factors through a, so they have the same rank. So, our problem is to

assign to a given f.g. submodule of an f.g. R' submodule of an f.g. projec-

tive R' module a rank so that the associated map rank function is Sylvester.

Let P = e PQ R be an f.g. R' module, where we may assume
u u Ru

that P
0

is 0; we identify P with the module N that we have been

discussing in this chapter, and so, we identify N
u

with P P. So, we have

bases Qu of each Pu over k, bases T1 u{l} of M(k) over k, and

T2 u{1} of R over k, and consequently, a basis U of P over k

consisting of monomials of the form q or gt1...tn. We also have the well-

orderings previously defined of U and of the functions from {0,1,2} x U

to the natural numbers.
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Let L c P be some f.g. R' submodule of P; let LU be the

RU submodule of elements of L whose U-support does not contain the p-

leading term of some non-U-pure element. For U = 0,1, L11 has a rank as

RU module, where pU are the usual rank functions on k and Mn(k). For

U = 2, the map rank function allows us to define the rank of the inclusion

of L2 in P as a map of R2 modules (recall that we earlier how to extend

a Sylvester map rank function in a canonical way to give us the rank of maps

from an f.g. module to an arbitrary module). We define the pre-rank of L

to be p0(L0) + p1(L1) + p2(L2 E P). The rank of L is defined to be the

minimal possible pre-rank of an f.g. submodule of P that contains L. So,

the rank of a map a:p' - P between f.g. projective R' modules is defined

by the formula: p(a) = min {pre-rank (L)}. We shall show that p is a
LD in a

Sylvester map rank function.

If we have a map a: P' R - P, we could assign what we might
11 U

regard as a pre-pre-rank, which is p0((Pp)) + pl((Qi)) + p2(alpi); our
2

next lemma, which shows that the pre-rank is the minimal possible pre-pre-

rank' as we consider the composition of a with isomorphisms of ® R
RP

with other induced modules is the main step of the proof that p is a

Sylvester map rank function.

Lemma 7.9 Let L c P be some f.g. R' submodule of P; let

{MU:U = 0,1,2} be RU submodules of L such that EMUR' = L; then the
11

pre-rank of L c P is the minimal value of p0(M0) + p1(M1) + p2(M2 c P).

Proof: Theorems 7.6 and 7.8 give us a finite sequence of operations that

pass from any given trio of modules {MU} that generate L to the trio

{LU} where LU is the set of elements whose U-support does not contain

the p-leading term of some non-U-pure element of L. So, we simply need to

show that these operations cannot increase the 'pre-pre-rank'.

So, suppose that M0 is not O-pure; then there exists x in

M0, where x is 1- or 2-pure, its leading term is u, and cOu(x) = 1;

if x is 1 pure, we replace:

M0 by ker cOUl M0;

M1 by M1 + xRl;

M2 by M2.
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The pre-pre-rank does not increase.

If x is 2-pure, we replace

MO by ker cOu1MO;

M1 by Ml;

M2 by M2 + xR2

and again the pre-pre-rank cannot increase, since the contribution of the

0-term has decreased by 1, whilst the 2-term has increased by at most 1.

If M1 is not 1-pure, we simply transfer a free R1 module to

an R0 free module so the pre-pre-rank cannot increase.

if M2 is not 2 pure, there is an element x in M2 with 2-

leading term u such that c2u (x) = 1; in this case M2 = ker c2u+ xR2

where xR2 is a free direct summand of M2; it is also, however, a free

direct summand of P, since c2u (x) = 1, so,

p2(M2 c P) = P2(ker(c2ulM2) SP) + 1.

In this case, our operation replaces:

M0 by MO + xRO;

M1 by M1;

M2 by ker(c2ulM2)

and by our previous remarks, we see that the pre-pre-rank cannot increase.

Thus, we have shown that our efforts to make each M11 u-pure do

not increase the pre-pre-rank. We consider next the transvections we need

to make them well-positioned.

If M11 contains the u1-leading term u for some non-p1-pure

element xa for
x

in Mp ,a in R' and if pi = u2, deg xa > degx,
2

then for ul = 0,1, we know that the transvection takes M to a homo-
ul

morphic image of itself whilst fixing the other M M. If, however, pi = 2,

more care is required. We assume that c2u(xa) = 1. We define a functional

C2u
on M2 by f:M2 c P - R2; the transvection fixes M0 and M1 and sends

M2 to MZ the image of LM - xaf; this map has as a left factor the
2
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inclusion of M2 in P; consequently, by axiom 2 for a Sylvester map rank

function it follows that p2(MZ c P) is at most p2(M2 c P) and the pre-

pre-rank does not increase.

Finally, we consider the case where (M,,:u a M} is a well-

positioned family of submodules of L such that EM
V
R' = L but M p for

11
1

some ul = 0,1,2 contains in its p1-support some monomial u that is the

u1-leading term of some non-p1-pure element x in L; we also may assume

that c (x) = 1.
ulu

If ]Il = 0,1, we see that the new MP is a homomorphic image
1

of Mu , whilst the remaining MP do not change. If ul = 2, we fix M0
1

Ip-x C2u
and M1 and send M2 to the image of M2 S P -* P, where IP - xc2u

is clearly an R2 linear map; again M2 S P is a left factor so the pre-

pre-rank cannot increase, which completes the proof of the lemma, since

there are no more operations that we have to worry about.

Theorem 7.10 Let R2 = R be a k-algebra with a Sylvester rank function p

taking values in a Z; let RO = k, and let Rl = Mn(k) with the standard

rank functions pO,pl respectively; let R' = R1 R R2; let p be the rank
O

function on maps between f.g. projectives over R' defined in the foregoing.

Then, p is a Sylvester map rank function taking values in

n

Z. Consequently,

there is a homomorphism from R to a simple artinian ring inducing the

Sylvester map rank function p.

Proof: We need to show that axioms 1 to 4 for a Sylvester map rank function

actually hold for p.

1 is clear.

We consider 2. Let a:Pl - P2, S:P2 -* P3 be a pair of maps

where we have an expression of P. as an induced module up our sleeve when

we need it. The image of aR lies in the image of g, and so, p(as) <_ p(6).

p(a) is the pre-rank of some f.g. submodule containing im a

L = ® L R' c P where L is the set of elements whose p-support does
u u Ru 2 11

not contain the p-leading term of some non-p-pure element of L. That is,

p(a) = pO(LO) + pl(Ll) + p2(L2 P); the image of as lies in E(LU)R',

so, by the last lemma,
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P((X8) 5 PO(B(L0)) + P1(R(L1 + P2($(L2) S P).

The map L2 S P2 B
P3 has L2 C P2 as left factor so

P(as) <_ PO(LO) + P1(L1) + P2(L2 c P2) = P(a).

So, 2 holds.

the rest of 3 follows from 4.

The reason that a Sylvester map rank function works is essentially

because of axiom 4; so, one would expect this to be the most difficult part

of the proof. It is.

Let L be an f.g. submodule of Q ® Q' that contains the image of
a O

Y B)

such that p(Y
B

is the pre-rank of L. We consider the action of the

projection p:Q 0 Q' + Q on L; the idea is to find R
u

submodules of

'} such that {p(L')} are a well-positioned family, which impliesL, {L
u u

that p(L) _ p'(LU)ORUR; also, we wish the pre-rank of L to equal

p0(LD) + pl(L1) + p2(LZ c Q ® Q'). This allows us to express p2(LZ c Q ® Q')11

a2 O (aY 2 O P" Q

as being p2(Y2

S2/

for a map

2 5 2I: PZ/ --((D

where Pi are f.g. R2

projectives, (kerpILi)R' + (im82)R' D im S, and also,

(impIL!)R' + (ima2)R' im a. From this, 4 follows as a

corollary of 4 for p2 on R2.

Let L
u

be the set of elements of L whose p-support does not

contain the p-leading term of some non-p-pure element of L: then, we know

that L = 0 L OR R' in the natural way, and the pre-rank of L is equal to
u u u

pO(L0) + P1(L1) + p2(L2 c Q (D Q').

Let p:Q ® Q' -+ Q be the projection on Q; if {p(LU)} is not

a well-positioned family, we perform a series of free transfers and trans-

vections on the family of modules {L
u

} until their image do form a well-

positioned family. It is clear that the free transfers do not increase the

pre-pre-rank of the family of modules {LU) at any stage, so, we are left

For the time being, we remark only that p
(a

S) <_ p(a) + P(S);

Consider a map

(a

0\:(P)

- (QQ)P
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to worry about the transvections. These arise when the image p(L ) are

all p-pure but some p(L contains the u-leading term u of a non-p-pure

element xa chosen so that cuu(xa) = 1, x is in p(LU) and if

u = u', deg(xa) > deg(x). It is clear that the only case that worries us

occurs when u = 2. In this case, we alter L2 to the image of

I - x'a(pc2u)
L2 C Q ® Q' Q 0 Q', where x' is a pre-image of x under p.

Since this map factors through L2 c Q 0 Q' it cannot give a greater pre-

pre-rank. So, eventually, we reach a family of modules {L'} such that the

pre-pre-rank associated to {L'} is at most that of the family {L we

began with and the images P(Lu') form a well-positioned family. Since the

modules {LU} generate L, their pre-pre-rank must be at least that of the

family {LU} by lemma 7.9. Since p(LL) form a well-positioned family,

p(L) = 0 p(L')QR'. So, the kernel of p restricted to L isRU
11

11

0 kerplL'® R. We have exact sequences 0 + L' n Q' + L -+ p(L') -+ 0 for
u RU u u u

U = 0,1,2.

From this, we wish to deduce that

pu(L') = pu(L' n
Q + pu(p(L')), u = 0,1, which is clear; and also, that

p2(L2 p2(LZ n Q' s Q') + p2(p(LZ) S. Q), which needs an argument.

((L' n Q') c Q') becauseIn fact, it is not obvious that we can define p
2 2

L2 n Q' need not be f.g. Instead we approximate it by f.g. modules that are

good enough.

Let a2:P1 + Q be some R2 linear map from an f.g. R2 projec-

tive module whose image equals p(L2); then, we have a map from P to LZ

lifting a2, we write its composite with L2 S. Q ® Q' as fa2\:P + \Q

Y2 Q'

L2 is a f.g.; therefore, we can find a f.g. R2 submodule of L2 n Q', M2

such that together with the image of (a21P it generates the whole of L`Y

2

we may further assume that (L'O n Q')R' + (L1 n Q')R' + M2R') contains the

image of $.

We find some R2 linear map p2:P2 + Q' whose image is M2,

and we construct the composite map: a2

02):(P:)-.(Q
(Y2

Q,\ SP2
a2 0

By construction, the image of

Y2

62is L2' so that
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P2(LZ c Q ® Q ' ) is p2 (a2 S) > p2(a2) + P2(62).
1\Y2 2/I

Since im B E (L'0 n Q')R' + (Li n Q')R' + (im B2 )R',

P(B) P0(L' n Q') + p1(Li n Q') + p2(B2), and similarly,

P(a) <_ P0(P(L')) + P1(p(L')) + P2(a2).

So,
P(OY ) = pre-rank of L = p0(LD) + p1(Li) + p2(LZ c Q ® Q')

which is p0(LD) + pl(L') + P2(Y2 S which is greater than or equal to
1 2

P(L, n Q') + pl(Li n Q') + p1(p(Li)) + p2(a2) + p2(B3), which

is at least p(a) + p($). This is axiom 4, and also completes the proof of

3.

We have extended p2 on R2 = R to a Sylvester map rank function

p on Mn(k) k R, and it is clear that p takes values in n Z.

Mn(k) k R = Mn(A) where A is the centraliser of the first factor of the

coproduct. So, by Morita equivalence, p induces a Sylvester map rank func-

tion on A that takes values in Z. By theorem 7.5, the universal localisa-

tion of A at the set of maps between f.g. projectives whose rank is equal

to the rank of the identity map on the domain and the codomain is a local

ring with a skew field F for residue class ring. Moreover, the map A -* F

induces the rank function on A. Consequently, the composite map

R - Mn(k) k R Mn(A) 3 Mn(F) induces the rank function p2 on R. As we

saw in theorem 7.5, the kernel of the map consists of the elements r in

R such that p(R/rR) = 1, or equivalently, such that p(r) = 0.

Theorem 7.11 A Sylvester rank function on a k-algebra R taking values in

n

Z arises from a homomorphism to a simple artinian ring, Mn(D), where D

is a skew field. The kernel of the map consists of the elements of rank 0.

We summarise the contents of this chapter so far with regard to

homomorphisms from k-algebras to simple artinian rings.

Theorem 7.12 Let R be a k-algebra; then there is a 1 to 1 correspondence

between equivalence classes of homomorphisms from R to simple artinian

rings of the form M
n
(D), where D is a skew field, and Sylvester rank

functions that take values in Z.
n
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This result has the following interesting consequence

Theorem 7.13 Every right artinian k-algebra embeds in a simple artinian

ring.

Proof: Call the right artinian ring A. Let s be the length of A as a

module over itself. We define a module rank function by

p(M) _ (length of M)/s. Clearly, this is a Sylvester module rank function.

By theorem 7.11, there is a homomorphism from A to a simple artinian ring

S, which induces this rank function on A, and the kernel of this homo-

morphism is the set of elements a in A such that p(A/aA) = p(A); the

only element for which this is true is 0.

In order to find the modification necessary to extend theorem

7.12 to a theorem about homomorphisms from an arbitrary ring to simple

artinian rings, it is useful to see what can go wrong in general. We look at

possible Sylvester map rank functions on artinian rings. If A is an artinian

ring, then GD(R) = Zk, where t is the number of non-isomorphic simple

modules. We assign the simple modules ranks in the non-negative rationals,

and it is clear that this defines a rank function on G0(A) that induces a

Sylvester module rank function on A, and so, a Sylvester map rank function

on A provided that we normalise it to ensure that the rank of the free

module of rank 1 has rank 1. In the case where A is a k-algebra, we have

just shown that these must all arise from a homomorphism to a simple artinian

ring, and it is easy to check that they arise from the representations given

by the f.g. projective left A modules. However, for a general artinian ring,

it is easy to see that they do not all arise from a homomorphism to a simple

artinian ring. For example, consider the ring Z/p2, which has the unique

simple module Z/p, to which we assign the rank '/. It has no embedding in

a simple artinian ring, but this rank function is faithful. What has gone

wrong in this example is that we have the rank / associated to multiplication

by p on the free module of rank 1, whereas in a simple artinian ring, the

rank of an integer must be 0 or 1, depending on whether it is invertible

or 0. This turns out to be the only modification we need to our previous

theory.

Theorem 7.14 Let R be a ring. Then the equivalence classes of homomorphisms
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from R to simple artinian rings are in 1 to 1 correspondence with the

Sylvester map rank functions that take values in

n

Z such that the rank

of an integer is 0 or 1.

Proof: All that is left to do to prove this is to show that every Sylvester

map rank function of the right type arise from homomorphisms to simple

artinian rings. Let p be such a rank function on the ring R.

Assume that p(n) = 0 for a non-zero integer n. Let I be

the set of elements in R such that p(r) = O. We have already remarked

that this forms an ideal of R. Moreover, if mn lies in I for integers

m and n, one of m and n must lie in I for if p(m) = 1,

p(mn) = p(n). Therefore, the intersection of I with Z is a prime ideal

of Z. Consider R/I, which is a Z/p algebra for some prime p. We

define a Sylvester map rank function on R/I by p(a) = p(a) where a is

the image of a in R/I; it is simple to check that p is well-defined.

Consequently, it is induced by some homomorphism R/I - S to a simple

artinian ring. The map from R to S induces p on R clearly.

Conversely, assume that p(n) = 1 for all non-zero integers n.

Then, by 7.4, the rank function p on R extends to a Sylvester map rank

function on RZ* since all the elements in Z* have the same rank as the

identity map on their domain and codomain. But RZ* is a p1-algebra, so the

rank function on it is induced by a homomorphism to a simple artinian ring,

S. The induced map from R to S induces on R.

Maximal epic subrings and dominions in simple artinian rings

One of the difficulties we encountered at the beginning of our

study of a homomorphism fiom R to a simple artinian ring S was that the

maximal epic R-ring in S was not simple artinian. In this section, we shall

study an individual homomorphism from a ring to a simple artinian ring more

closely; we shall be interested in the maximal epic R-ring and the dominion of

R in S. Our principal results state that they must both be semiprimary

rings.

We had better define the terms in the last paragraph. Given a

homomorphism from a ring A to a ring B, we consider the set of all epic

A-rings in B; since the ring generated by two epic A-rings is an epic A-

ring, and the union of epic A-rings is an epic A-ring, there is a unique

maximal epic A-ring in B. The dominion of A in B is the maximal subring

D of B such that homomorphisms from B that agree on the image of A in
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B must agree on D; it is clear that the maximal epic A-ring in B lies

in the dominion of A in B. The dominion has a simple description given

in the next lemma. First, we define a useful construction. If R is a ring

and M is an R bimodule, the trivial extension of R by M is the ring

whose R bimodule structure is R ® M, and whose multiplication is defined

by M2 = 0.

Lemma 7.15 Let 4:A - B be a ring homomorphism; then the dominion of A

in B is the centraliser of 1 0 1 in the B,B bimodule B 0AB.

Proof: Certainly, the dominion centralises 1 ® 1, for we have the following

two ring homomorphisms from B to the trivial extension of B by B aAB;

the first is the identity map from B to B; the second sends b e B to

b + b a 1 - 1 M b. They agree on A, so, they must agree on D, which

shows that d 0 1 = 1® d for d in D.

Conversely, if we have two homomorphisms from B to a ring C

that agree on A, 1 and 2, the B,B bimodule 41(B)02(B) is a quotient

of B '2A B, so that the centraliser of 1 0 1 lies in D.

In order to give the reader some better idea of the dominion, we

prove the following interesting lemma. The double centraliser of a subring

A of a ring B is the ring of elements of B that centralise the centraliser

of A in B.

Lemma 7.16 Let :A } B be a ring homomorphism. The dominion of A in B

lies in the double centraliser of A in B. If A is a k-subalgebra of

M(k), the dominion of A in M(k) is its double centraliser.

Proof: Let c lie in the centraliser of A in B; we define two homo-

morphisms from B to BCx:x2 = 01 one of which is the identity map, the

other of which sends b in B to b + x(bc - cb). It is clear that they

agree on the image of A, and so, they agree on D the dominion of A in

D; consequently, D lies in the double centraliser of A in B.

In the case where B M
n

(k) and A is a k-subalgebra, we may

prove the converse. We use the last lemma. D is the centraliser of 1 a 1

in Mn(k)OAMn(k). As Mn(k), Mn(k) bimodule, Mn(k)QAMn(k) = tMn(k) for

some integer t. Let c1,...ct be the images of 1 0 1 in the direct

summands on the right of this isomorphism; then the dominion of A in M
n
(k)
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is the centraliser of these elements, and cl,...ct all lies in the

centraliser of A in Mn(k).

We wish to study the dominion of a ring A under a homomorphism

from A to a ring B; our next lemma gives us a method of attack.

Lemma 7.17 Let 4:A - B be a ring homomorphism; then the dominion of A

in B is the endomorphism ring of the module M over the ring B BLAB

O B

where M is given by the exact sequence: 0 -* (0 B) ar (B BOAB) -s M - Q

a (O b) = (0 lob).

Proof: All endomorphisms of M lift to endomorphisms of (B BMAB) that

normalise (0 10AB). The endomorphism ring of (B BOAB) is defined by

left multiplication by elements of B; so we look for elements t of B

such that tM1 = let. Hence, our lemma follows.

If B is semiprimary, so is B BOAR ; therefore, we wish to

O B

show that the endomorphism ring of a finitely presented module over a semi-

primary ring is itself semiprimary. This has been shown by Bjork (71), who

also had results in the direction of the corresponding theorem for left

perfect rings; we shall present a proof of both these results next,

generalising Pjork's theorem.

Theorem 7.18 Let R be a left perfect ring (or a semiprimary ring), and

let M be a finitely presented right module over R; then the endomorphism

ring of M over R is left perfect (or semiprimary respectively).

Proof: First, we see that because M is finitely presented it has the

descending chain condition on submodules with a bounded number of generators,

since this is true for its projective cover by the left perfect condition.

Consequently, it is the direct sum of finitely many indecomposables.

Let P be the projective cover of M; so there is an exact

sequence: 0 -; I - P - M + 0 where I is finitely generated. Any endo-

morphism of M lifts to an endomorphism a of P such that a(I) S I. We

intend to show that every endomorphism of M lifts to a nilpotent endomorphism

of P or acts invertibly on a direct summand of M.
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Let a:M - M lift to a:P - P, a(I) c I. There exists an

integer n such that anP = an+1P and anM = an+1M. Since a:anP _>. anP

is surjective, and EndR(P) is left perfect, a
n
P = eP for some idempotent

endomorphism of P, e. If anP = 0, then anM = 0, since (1-e)P cannot

map onto M as P is the projective cover of M.

n (anP + I)/I = eP/I n eP = eP/eI, which shows that ana M M is finitely

presented; further, a:anM i anM is a surjective map; we shall show that

this forces it to be an isomorphism on anM. Let J/eI be the kernel of

this map; so, eP/J = eP/eI; so, there exists an endomorphism S:eP + eP

such that RJ = eI. Since I c radP, ei c rad(eP) and eP is the projective

cover of anM; therefore, a must be an invertible map since it is inducing

an isomorphism module the radical of P; if $J = eI c J, we obtain an

infinite descending chain of modules of bounded number of generators,

J x SJ x .... z ei ..., which is impossible, so J = eI, and a is an

isomorphism on a
n
M with inverse y. We see that y

n
a
n

gives a projection

from M onto anM, which proves our dichotomy.

Next, we show that if M is an indecomposable module, its endo-

morphism ring is left perfect (or semiprimary if R is semiprimary). Since

M is indecomposable, every endomorphism on M is invertible or else it

lifts to a nilpotent endomorphism of the projective cover P of M as we

have just shown. First, we deal with the left perfect case. Let a,
i

be

elements of EndR(M) that lift to nilpotent endomorphisms ai on P. The

elements a. are themselves nilpotent and so, al
.. anM z

al
... an-1 M;

hence, al ... anP +I c al ... an-1P + I provided that al " ' an-1P 4 I.

The number of generators of a1 .., a
n
P + I is bounded for all n, so

eventually, a1 ... a
n
P c I, which implies that al ... an = 0. This shows

that the radical of EndR(M) is left T-nilpotent and so EndR(M) is left

perfect by Tachikawa (73). This leaves the case where R is semiprimary.

Then EndR(P) is semiprimary, so that there exists an integer N such that

aN = 0 for any nilpotent endomorphism of P; hence, if a is an endomorphism

of M that is not invertible aN = 0. By the Nagata, Higman theorem, the

radical of EndR(M) is nilpotent, so EndR(M) is semiprimary.

If M is an arbitrary f.g. module, we write M = ®=1M, , where

N. are indecomposable; by theorem 2.4 of Tachikawa (73) End(M) is left

perfect if R is, and it is semiprimary if R is semiprimary.
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Putting this theorem together with the preliminary discussion, we

deduce what we were after.

Theorem 7.19 Let +:R -+ S be a homomorphism from a ring R to a semiprimary

ring S; then the dominion of R in S is also semiprimary.

Proof: By lemma 7.17, the dominion is the endomorphism ring of a suitable

finitely presented module over a semiprimary ring; so it is semiprimary by

theorem 7.18.

This theorem has a number of interesting consequences but we begin with the

following lemma.

Lemma 7.20 Let {D
1
.} be a family of subrings of a ring all of which are

their own dominion in R; then D. is its own dominion in R.
1 1

Proof: The dominion of nD, in R is the centraliser of 101 in RO R.
1 1 nDi

By considering the natural map from ROnD R to ROD R, we see that this
1 1

centraliser must lie in D. and so in nD,; therefore nD, is its own
1 1 1

dominion.

A semisimple artinian ring is always its own dominion, so there

is the following result.

Theorem 7.21 The intersection of a collection of semisimple artinian subrings

of a ring is always semiprimary.

The kernel of a derivation d:R -+ M is always its own dominion,

as one sees by considering ring homomorphisms from R to the trivial exten-

sion of R by M; similarly, it is clear that the fixed points of an endo-

morphism of a ring R is a dominion. It follows that the kernel of a family

of derivations or the fixed points of a family of ring endomorphisms on a

semiprimary ring is also semiprimary. Similar results are true for perfect

rings. The following corollary will be needed in the next section.

Corollary 7.22 Let S be semiprimary with subring R; then the centraliser

of R is semiprimary.
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Proof: The centraliser is the kernel of the inner derivations determined by

the elements of R; so we can apply the foregoing discussion.

We should like to study the maximal epic R-subring of a ring R

under a homomorphism from R to a semiprimary ring, S. First of all, the

maximal epic R-subring must lie in the dominion of R in S, and this

suggests that we attempt to find it in the following way. Let DO be the

dominion of R in S; in general, let Di+l be the dominion of R in

Di; at all stages the maximal epic R-subring of R in S must lie in Di,

so we hope that at some stage Di = Di+l, which implies that R -> D. is an

epimorphism and D. is the maximal epic R-subring of R in S. This is

what we shall show and it follows that the maximal epic R-subring of a ring

in a semiprimary ring is always semiprimary, since we know that each D,
i

is

semiprimary.

Theorem 7.23 Let :R - S be a ring homomorphism from R to a semiprimary

ring S; then the maximal epic R-subring in S is semiprimary.

Proof: As above, we let DO be the dominion of R in S, and in general

we let Di+l be the dominion of R in Di. By theorem 7.19, each D. is

semiprimary. At each stage the number of elements in a maximal set of ortho-

gonal idempotents is finite and decreases as the subscript increases; there-

fore it is eventually constant at some integer s. Once this stage has been

reached, the number of non-isomorphic principal indecomposable projective

modules can only increase as the subscript increases, and it is bounded by

s; therefore it is eventually constant at some integer t; we assume that

we have reached this point for the subring D
m

.

Let Nk be the radical of D
k

; then for k > M, we shall show

that Nk = Nm n Dk. Certainly, m n Dk C Nk. For the converse, we note

that by construction a maximal set of orthogonal idempotents in Dk is also

a maximal orthogonal set of idempotents in m; this continues to hold for

Dk/Nm n Dk inside the semisimple artinian ring Dm/Nm. Further the number

of non-isomorphic principal indecomposable projectives over Dk/Nm n Dk is

equal to the number of simple D
M
IN
m

modules; consequently, if {e
i
:I = 1

to s} is a maximal set of orthogonal idempotents in

Dk/Nm n D eiDk/Nm n Dk = e.Dk/Nm n Dk if and only if eiDm/Nm = e.Dm/N.

If D IN = x M (E.), for skew fields E., it is now clear thatm m i vi i i
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Dk/Nn n Dk x v (Fi) where F. is a semiprimary subring of the skew field
i 1

Ei and consequently a skew field itself; it follows that Nk = Dk n Nm.

Suppose that
Nu-1

= o. D IN c D IN D IN . Since
m m+u m+u - m+l m+l m m

Dm+l
is the dominion of Dm+u in Dm, Dm+lINm+l is contained in the

dominion of the semisimple artinian ring Dm+uINm+u in Dm/Nm; so,

Dm+uINm+u = Dm+lINm+l'
In general, assume that

D /Nj n D = D /N3 n D then D /Nj+l n D c D /N &+l n D
m+u m m+u m+j m m+j' m+u m m+u m+j m m+j

and they differ only in the socle of the rings which implies that as right

modules over D /Nj+l n D , D /N j+1 n D = D /N j+1 n D $ M,
m+u m m+u m+j m m+j m+u m+u

where M is a semisimple module; this implies that the dominion of

D /N j+1 n D is itself and must equal D /NJ+1 n D For, if
m+u m m+n m+j+l m m+j+1'

A c B and B= A$ M as right A module, then

BOAR = A $ MOAB = A®AB ® MOAB, and mOl x l8b for any m in M and b

in B. By induction, we find that D = D which proves that D
m+u m+u-1 m+u-l

is the maximal epic R-subring in S. Therefore, the maximal epic R-subring

is semiprimary.

An odd consequence of this result is that a ring has a homo-

morphism to a simple artinian ring if and only if it has an epimorphism to

a simple artinian ring: let :R -> S be some homomorphism to a simple art

artinian ring, and let E be the maximal epic R-subring in S; then E is

semiprimary and so it maps surjectively to some simple artinian ring, S';

the composite map from R to S' is an epimorphism.

The simple artinian spectrum of a k-algebra

There has been much talk about a theory of non-commutative

algebraic geometry. It is not my intention here to add to this, but rather

to point out that our preceding theory does give us a functor from rings to

topological spaces which is a simple summary of the information on possible

homomorphisms from the ring to simple artinian rings. It would be possible

to equip this space with a sheaf of rings, and to represent modules over the

ring as a sheaf of modules over this sheaf of rings; however, in the absence

of any obvious use for this machinery, I shall leave it to future

mathematicians of greater insight. Finally, the theory here is stated only

for k-algebras over a field k; it is possible to present the theory for

arbitrary rings, but the care required in order to avoid simple pitfalls
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makes the discussion cumbersome.

We begin by considering a particular pre-ordered abelian group

functorially associated to a ring R. We define M(R) to be the abelian

group generated by isomorphism classes of f.p. modules over R with rela-

tions [A $ B] = [A] + [B]. We define an ordering on M(R) by specifying

a positive cone. [A] > 0 for all f.p. modules A, and if A -. B -. C - 0

is an exact sequence, we define [B] - [C] > 0, and [A] + [C] - [B] > 0.

If 4:R - S is a homomorphism of rings, [A] -s [A®RS] defines an order-

preserving homomorphism from M(R) to M(S), since 2
R
S is a right exact

functor. M(R) has an order unit since there exists n such that

[nR] > [A] for any module A. It is now clear that our Sylvester module

rank functions on a k-algebra R are simply order-preserving homomorphisms

from M(R) to 1 Z for varying integers m such that [R] goes to 1.
M

Given n such Sylvester module rank functions, p
i

, we form a family of

Sylvester module rank functions {Egipi.Egi = 1,
qi > 0, qi E @}. This

arises from the ring theory in a natural way, for if the homomorphism

YR - S. gives rise to the Sylvester rank function pi, we have a homo-

morphism from R to xSs., and the various homomorphisms from this semi-

simple artinian ring to simple artinian rings give rise to the rank functions

Egipi' So, our space of equivalence classes of homomorphisms from R to

simple artinian rings has the structure of a (Q-convex subset of the space of

all order-preserving homomorphisms from M(R) to the reals, and can be given

the subspace topology (once the space of all order-preserving maps from

M(R) to the reals has been given a suitable topology). A particularly

important set of points in this space are the extremal points which are those

Sylvester module rank functions that do not lie in the linear span of some

other set of Sylvester module rank functions. We should like to be able to

show that every Sylvester rank function arises in a unique way as an element

in the linear span of extremal rank functions. In order to prove this it is

convenient to look at homomorphisms to simple artinian rings in a slightly

different way.

If we have a homomorphism from a ring R to a simple artinian

ring Mn (D) where D is a skew field, we may regard the simple left M
n
(D)

module as an R,D bimodule M such that [M:D] = n; conversely, given such

a bimodule, we automatically have a homomorphism from R to M
n
(D). The

Sylvester module rank function associated to such a bimodule is given by

p(A) _ [AODM:D]/[M:D]. We note that the endomorphism ring of M as an R,D
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bimodule is the centraliser of R in M
n
(D). A decomposition of M as an

R,D bimodule, M = M1 ® M2 where the rank function associated to M. is

pi allows us to write p = ([M1:D]p1 + [M2:D]p2)/[M:D]. If this happens

then either p is not extremal or else it is extremal and the image of p

is a distinct subgroup of 1/[M:D]p. We shall show a sort of converse to

this statement.

Theorem 7.24 Any Sylvester rank function lies in the linear span of some

set of extremal rank functions.

Proof: Let R be a ring and let p be a Sylvester rank function taking

values in

a

$; so p arises from a homomorphism from R to Mn(D) for

some skew field D; we prove our theorem by induction on n; it is clear

for n = 1, since all such arise from homomorphisms to skew fields which

are extremal points. Let M be the simple left M
n

(D) module considered

as an R,D bimodule.

Under the assumption that p is not extremal, there exist simple

artinian rings S1,S2 and S and homomorphisms R -> S1 X S2 -; S such that

the composite map induces the rank function p whilst R -+ S. induces the

rank function p
i

different to p. By theorem 7.3, there exists a simple

artinian ring M (D) o S = M (E), and from this we form the simple artinian
n R np

ring Mnp(D) Ml(D)Mnp(E) = Mnp(F); let M be the simple left

Mnp(F) module regarded as an R,F bimodule. Since R lies in Mnp(D),

M = (MODF)R as R,F bimodule; on the other hand, R lies in S1 X S2 and

so the centraliser of R in M
np

(F) contains an idempotent e such that

the rank function associated to eM is the rank function p1; consequently,

eM is not isomorphic to a direct sum of copies of MO F; since M is a
D

module of finite length, the Remak, Krull, Schmidt theorem implies that

M11DF M1 ® M2 for some R,F bimodules M1 and M2. Therefore, p lies

in the linear span of the rank functions associated to the bimodules M,;
i

however, [Mi:F] < n, and so the theorems follows by induction on n.

By applying the argument used in this theorem in the light of

the information it gives us we can strengthen our conclusion yet further.

Theorem 7.25 Any Sylvester rank function has a unique expression as the

weighted sum of extremal points; further, if p = 1/mEmip
i

where Emi = m,
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h.c.f.{mi} = 1, and pi is an extremal rank function mapping onto 1/s,Z,

then p maps onto 1/ Em
1

1,s1,.

Proof: Let R be the ring on which we have the Sylvester rank function p.

Further, let p = 1/mEmipi be some expression of p as a weighted sum of

extremal points pi where pi maps onto 1/s so that to each rank func-

tion p
1
., we have a homomorphism from R to a simple artinian ring

S. = M (D.) where D, is a skew field; let M. be the simple left
1 Si 1 1 1

M
si

(D
1
.) module regarded as an R,D

1
, bimodule. Let R -. M

n
(D), where D

is a skew field, be a homomorphism inducing p. Let M be the simple left

M (D) regarded as R,D bimodule. Let N = Es.m,. We also have a homo-
n 1 1 1

morphism R -> xMSi(D.) -> xM (Di) -> MN (E) for some skew field that induces
i

sim1

the rank function p on R; in order to do this, it must assign the rank

1/n to a simple module over the ring xM (D,), and we we have specified
i Simi 1

homomorphisms from D. to E. We form the simple artinian ring MN(E) o Mn(D)
R

which is isomorphic to MN (E') for some skew field E'; we form the
p

simple artinian ring MNp(D) 14n?D)MNp
(E')

MN lE)MNP
(E) Z MN

P
(F). Let M be

t

the simple left MN (F) module considered as an R,F bimodule. Since R
P

lies in xM (D.), its centraliser contains a copy of M (xM (k)) where1 Si p
m1

k is the centre of F, and therefore, M = ® (Mi0D F)mip as R,F bimodule.

Since the rank function induced by the bimodule M.OD F is extremal and maps
1

onto l/siZ where si = EM.:D.], MiQDF is indecomposable; however, R

also lies in Mn(D), so, on setting q = Np/n, we see that M = (MeDF)q

as R,F bimodule. By the Remak, Krull, Schmidt theorem, we see that q

divides p, and McDF = ® (M.OD F)m1P/q, therefore, N divides n. If

p maps onto 1/t there is a homomorphism to a simple artinian ring Mt(D')

where D' is a skew field that induces p; we have just shown N must

divide t, but it is clear that p takes values in 1/N Z so that the last

statement of the theorem follows. The first statement of the theorem is clear

by now, since for any skew field G containing F, M®FG = ® (MiOD G)miP/q
1

is the unique representation of MFG as a direct sum of indecomposable bi-

modules, which shows that any representation of p as a weighted sum of

other rank functions is refinable to this representation in terms of extremal

points.
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There is one further point we should mention in this discussion

of R,D bimodules; the last result shows that the extremal points correspond

to bimodules that remain indecomposable under 'extension of skew field'; we

should like to be able to characterise those extremal points that arise from

epimorphisms to simple artinian rings in some similar way. Before we can do

this, we need to link the notion of epimorphisms on rings to the associated

functor on categories of modules over the rings. The next result is due to

Silver (67). A functor from a category C to a category D is said to be

full if it is an embedding, and if M,N are objects in the image of the

functor, and a is a map between them, a is in the image of the functor.

Theorem 7.26 Let :R - S be a homomorphism of rings; it is an epimorphism

if and only if the forgetful functor O:mod S + mod R is a full functor.

Proof: If :R + S is an epimorphism, then for any S module M,

MGRS McS(SORS) MASS = M: so for any pair of S modules M,N an R

linear map from m to N must be S linear as we see by considering the

map it induces from MGRS to NORS.

Conversely, if :mod S - mod R is a full functor,

HomR(S,S&RS) = Hom
S
(S,SORS) ; we have an R linear map from S to SORS

given by a(s) = sal; so this defines an S linear map, and

s®l = a(s) = a(l)s = les, which implies that SORS = S, which shows that

R + S is an epimorphism.

The following consequence is noted by Ringel (79).

Theorem 7.27 Let R be a ring, and let M be a module over R such that

EndR(M) is a skew field D, and [M:D] = n; then the corresponding map

from R to M
n
(D) is an epimorphism, and all epimorphisms arise in this

way. M is the simple Mn(D) module.

Proof: Let R + S be an epimorphism from R to a simple artinian ring S;

then if M is the simple S module, EndR(M) = EndR(M) = D, a skew field,

and [M:D] = n where S = M (D).
n

Conversely, if M is an R module such that EndR(M) = D, a

skew field, and [M:D] = n, we have a map from R to M
n
(D) and given any

Mn(D) module, its structure as an R module is a direct sum of copies of
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M; so it is clear that all R module maps between S modules are S

module maps, which shows that the map from R to Mn(D) is an epimorphism

by 8.4.

So this shows that epimorphisms ought to correspond to simple

bimodules. Our next theorem proves that this is precisely the case.

Theorem 7.28 Let p be a Sylvester rank function on the ring R taking

values in !-Z; then p is induced by an epimorphism to a simple artinian
n

ring if and only if there is a skew field D and a simple R,D bimodule

M, [M:D] = n, that induces this rank function on R.

Proof: If R + M
m

(D) is an epimorphism where D is a skew field then the

simple left M
m

(D) module M considered as an R,D bimodule is simple.

Conversely, if M is a simple R,D bimodule for some skew

field, [M:D] = m, let R' be the dominion of R in M
m
(D); if N is

the radical of R', NM is a distinct R,D sub-module of M; therefore,

N = 0, and R' is a direct sum of simple artinian rings, since it is a

semiprimary ring (theorem 7.19); if e is a central idempotent in R',

e x 1, then em is a distinct sub-bimodule of M and so e = O. Hence,

R' must be simple artinian, and the homomorphism from R to R' is an

epimorphism.

The results of this section show that the space of all Sylvester

rank functions on a ring form a sort of infinite dimensional T-simplex since

every point in it may be expressed in a unique way as a weighted sum of

extremal points; this suggests that some detailed study should be made of the

homomorphisms from a ring to simple artinian rings that induce extremal rank

functions on it; at present, little has been done in this direction.

In addition to the simplex structure on the space of all Sylvester

rank functions, there is also a topology reflecting the notion of specialisa-

tion; we define a rank function p1 to be a specialisation of the Sylvester

rank function p2 if p2(M) < p1(M) for all f.p. modules M; it is easily

checked that this generalises the standard notion of specialisation. The

closed sets in our topology on the space of Sylvester rank functions are

those that are closed under specialisation. We may also reformulate a version

of the support relation discussed by Bergman (76) in terms of the simplex

structure on the space of Sylvester rank functions and the specialisation
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topology. We say that the extremal Sylvester rank function p supports the

extremal Sylvester rank functions {pi:i = 1 to n} if it specialises to

some point on the interior of the face spanned by {pi}. Again at present

we have little information on this structure.



PART II

Skew Subfields of Simple Artinian Coproducts
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8 THE CENTRE OF THE SIMPLE ARTINIAN COPRODUCT

In this chapter, we shall begin a fairly specific study of the

simple artinian coproduct with amalgamation; we shall attempt to find the

centre of such simple artinian coproducts in terms of the factors and the

amalgamated simple artinian subring. Unfortunately, our results are at

present incomplete, so we shall begin by stating the conjecture, and then

we shall summarise the cases for which it is known to be true, before we

prove them.

These results will be used in the next chapter to study the f.d.

division subalgebras of a skew field coproduct.

Conjecture 8.1 The centre of S1 o S2 lies in S, except possibly when
S

both S1 and S2 are of rank 2 over S; in this case, the centre lies in

S, or is the function field of a curve of genus 0 over its intersection

with S.

The function field of a curve of genus 0 over a field K is a

field F such that LOKF = L(t), where L is a suitable f.d. extension of

K, and t is a transcendental. We shall present examples to show that all

curves of genus 0 arise as centres of skew field coproducts at the end of

this chapter.

This conjecture is known to be true when S is a common central

subfield of S1 and S2. It is also true for skew field coproducts

amalgamating an arbitrary skew subfield, except possibly when there are only

two factors both of which are of dimension 2 over the amalgamated skew sub-

field. It may also be proven if one of the factors is simple artinian.

The result that we use to prove our conjecture when we can is

due to Cohn (84); it summarises the connection between the centre of a fir,
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and the centre of its universal skew field.

Theorem 8.2 Let T be a non-Ore fir with universal skew field of fractions

U; then the centre of U is the centre of T.

The proof is too long to include here; the interested reader

should look at Cohn (84). Our first special case of 8.1 is a direct applica-

tion of this.

Theorem 8.3 The centre of E1OMm(E2) lies in E, provided that [E1:E]
E

or [Mm (E2):E] is greater than 2.

Proof: El 0 Mm (E2) is the universal simple artinian ring of fractions of
E

El E Mm(E2) = Mm(R), where R is a fir, since, by Bergman's coproduct

theorems (see chapter 3), and the Morita equivalence of Mm(R) and R,

every submodule of a free R module is free. Further, the assumptions on

dimension imply that R cannot be Ore, and so, by 10.2, the centre of the

universal skew field of fractions of R is the centre of R. So, the centre

of the universal simple artinian ring of fractions of M
m

(R) is the centre

of M
m

(R), which lies in R, and, in particular, consists of units of R.

R is the ring of endomorphisms of the M
M

(R) module

SoM (E Mm(R), where S is the unique simple Mm(E2) module, and the units
m 2

of R induce the automorphisms of this module. By 2.18, the group of auto-

morphisms of this module are induced by the automorphisms of S as Mm(E2)

module; so the units of R lie in the copy of E2 inside it; therefore,

the centre of R lies in the copy of E2 inside it, and the centre of

Mm(R) = E1 E Mm(E2) must also lie in E2. However, if e is an element

of Mm(E2) - E, and f is an element of E1 - E, of x fe, so that e

cannot be central. Therefore, the centre of MM(R) which lies in E2 actually

lies in E. But this is the centre of its universal simple artinian ring of

fractions, as we saw at the end of the last paragraph.

Since this is all that is used in the following chapter, and the

remaining proofs of results towards conjecture 8.1 are complicated, the

reader may wish to bypass them for the time being; in this case, he may wish
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to look only at the examples which show that all function fields of curves

of genus 0 arise as the centre of a suitable simple artinian coproduct.

We wish to find the centre of the simple artinian coproduct of

two simple artinian rings over a common central subfield. The next two theorems

deal first with the non-Ore, and then with the Ore case. Of the two, the non-

Ore case is more complex.

Theorem 8.4 The centre of Mm (E1) o Mm (E2) is equal to k, provided
1 k 2

that one of [Mm (E1):k] or [Mm (E2):k] is greater than 2.
1 2

Proof: The idea of the proof is to reduce to the previous theorem by re-

placing m (E1) by a skew field closely related to it; more precisely, the
1

skew field will be a twisted form of Mm (E1). A simple artinian ring S

1

is said to be a twisted form of a simple artinian ring S', if we have a

central subfield k of each of them, and a f.d. field extension L of k

such that SOkL = S'OkL. For a detailed discussion of twisted forms of

algebraic structures, the reader should consult Waterhouse (79).

A twisted form of Mm (E1) that is a skew field need not exist;
1

however, the case where one does exist is an important special case:

Special case: there exists a central division algebra D such that

[D:k1 = m1, DOkE1 is a skew field, and D has a Galois splitting field L

such that E
i
0
k
L is simple artinian for i = 1,2.

In this case, our idea is to show that

((Do El) o M (E2 He
k
L = (Mm (E1) o Mm (E2))OkL. From theorem 10.3, we knowkm2

1 k 2

that (DOkE1) o Mm (E2) has centre k; if C is the centre of
k 2

Mm (E1) 0 Mm (E2 ), it follows from the isomorphism that COkL = L, so

1 k 2

C=k.
Consider the ring DokE1 o Mm (E2); then by theorem 8.3, it has

k 2

centre k. Therefore, S = (Do El o Mm (E2))&kL is simple artinian and it
k k 2
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is a universal localisation of (DOkEl k Mm2(E2))0kL = (DOkElOkL) L Mm2(E20 L)

which is isomorphic to M (E10kL)
L Mm (E20kL)

an hereditary ring withm
1 2

unique rank function, since each of the factors is simple artinian. On the

other hand, this ring is visibly isomorphic to (M (E1) k Mm (E2))OkL, whichm
1 2

has the universal localisation (Mm (E1) o Mm (E2))akL which is semisimple
1 k 2

artinian and hence weakly finite, and so must be a subring of S. But S

must be epic over it, and so it is actually the whole of S. Since S has

centre L, the centre of Mm (E1) o Mm (E2) is k.

1 k 2

General case: In order to deal with the situation where there is no f.d.

division algebra D of the sort required for the application of the special

case, we extend the centre k until there is.

Let K be the commutative field k(xl,...,xm), where {xi} is

a set of commuting indeterminates. There is an automorphism ¢ of this field

of order mi, given by the cyclic permutation of the indices. We form the

skew field D = let C be the centre of D.

It is easy to see that DOkE is a Noetherian domain for any skew

field E, and so, DokE has a skew field of fractions.

Let Ei be the skew field of fractions of E. C and let F'

be the skew field of fractions of FOkC, where Mm(F) = Mm (E1) o Mm (E2).
1 k 2

Then we have the equation Mm(F') = Mm (E') o Mm (E'). If L is central
1 C 2

in Mm (E1) o Mm (E2 ), then LOkC is central in Mm (Ei) o Mm (E'). So,

1 k 2 1 C 2

once we know that the centre of Mm (Ei) o Mm (E2) is C, we shall know
1 k 2

that the centre of M (E ) o M (E ) is k.
m 1 k m2 2

1

However, [D:C] = ml2, DOkEj is the skew field of fractions of

DOkEl, and KOCEi is actually a skew field for 1 = 1,2, so, by our first

case, the centre of Mm (E1) o Mm (E') is C, which forces the centre of
1 C 2

Mm (E1) 0 Mm (E2) to be k, as we wished to show.
1 k 2

We wish to deal with the remaining case of the coproduct of two
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simple artinian rings S1 and S2 such that [Si:k] = 2; clearly, both

are commutative fields.

Theorem 8.5 Let E1 and E2 be a pair of quadratic extensions of k. Then

the centre of E1 o E2 is purely transcendental of transcendence degree 1

over k.
k

Proof: This was also shown by Cohn by a different method.

By Bergman (74') or a simple calculation, the centre of E1 k E2

has the form kit], and El k E2 is a free module of rank 4 over k[t].

El JC E2 must be the central localisation of El k E2, and must be of rank

4 over the central subfield k(t). Since it is not commutative, this must

be the whole centre.

We finish off this chapter by shdwing that all function fields

of curves of genus 0 over k occur as the centre of a suitable simple

artinian coproduct with amalgamation. We shall need the next lemma in the

proof of this.

Lemma 8.6 M2(L) LXL M2(L) = M2(L[t,t-1]) for a commuting indeterminate t.

Proof: All embeddings of L x L in M2(L), are conjugate to the embedding

along the diagonal; so we may assume that the first factor has matrix units

ell, e12, e21,
and e22, whilst the second factor has matrix units ell' f12'

f21' and e22.

Since f12 lies in e11(M2(L) L
X -L

M2(L))e22' it takes the form

I\(O t)O O when it is written as a matrix over the centraliser of the first

from which it is clearfactor, and similarly, f21 has the form (s

00),

that s = t-1. Since the centraliser of the first factor is generated by

the entries of these matrices, the centraliser is isomorphic to L[t,t-1]

where t is an indeterminate, since the dimensions of the coproduct we are

considering is infinite.

Suppose that F is the function field of a curve of genus 0

over k; that is, FOkK K(t) for some Galois extension K of k with

Galois group G. Then F is a twisted form of k(t) and so by twisted form
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theory, it corresponds to a suitable element of H1(G,PGL2(K)) since

PGL2(K) is the automorphism group of k(x) over K (for example, see

Waterhouse (79)). Since PGL2(K) is also the automorphism group of M2(K)

over K, this element a of H1(G,PGL2(K)) corresponds to some central

quaternion algebra DF over k; moreover, Roquette (62) shows that F is

the universal splitting field of DF. Let L be a maximal separable

commutative subfield of DF; [L:k] = 2.

Theorem 8.7 Name everything as in the last paragraph; then M2(k) o DF = M2(F);
L

so all function fields of curves of genus 0 arise as the centre of a suitable

simple artinian coproduct with amalgamation.

Proof: (M2 (k) a DF)QkL = M2 (L) u M2 (L) = M2(L[t,t 1]) by the lemma above. So,

L LxL
(M2 (k) o DF)OkL = M2(L(t)), since both sides of this equation are obtained

L

by central localisation of the corresponding sides in the first equation.

Let F' be the centre of M2 (k) o DF; then F'OkL = L(t), so
L

that F' is either purely transcendental or else it is the splitting field

of a suitable quaternion algebra DF,. However, M2(k) o DF F'MkDF, so
L

that F' cannot be purely transcendental since it splits DF. Roquette

(62) shows that the universal splitting field of a central quaternion algebra

can split no other central simple algebra, so F' must be isomorphic to F,

which is what we want.
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9 FINITE DIMENSIONAL DIVISION SUBALGEBRAS OF SKEW FIELD COPRODUCTS

We intend in this chapter to make a detailed study of division

subalgebras of skew field coproducts; since the method developed may be

applied in much greater generality, we shall develop the results in this

context and then specialise the results to skew field coproducts. In later

sections of this chapter, we shall briefly consider its applications to

related rings.

Division subalgebras of universal localisations

For the purposes of this section, we shall assume that the rings

R,F,K,k satisfy the following conditions:

Assumptions: R is a left semihereditary k-algebra, where k is a commuta-

tive field. p is a rank function on the f.g. projectives over R taking

values in I 7 such that the universal localisation of R at the rank func-
n

tion, R
p

, is a simple artinian ring M
n

(F) where F is a skew field with

centre K, where K is a regular extension of k.

On the whole, there is nothing to this beyond naming the rings

that we are interested in.

An extension of commutative fields K D k is said to be regular

if KOkL is a domain for all commutative field extensions of k.

It is useful to reformulate our problem; we wish to find whether

a f.d. division algebra D over k embeds in a simple artinian ring Mn(F)

with centre K, a regular extension of k. We can broaden this a little

and ask for what numbers does D embed in M (F). This has a useful re-
m

formulation.

Lemma 9.1 Under the previous assumptions, Do0kF is a simple artinian ring.

Let S be the simple module for D
0

kF, and let [S:F] = s; then D embeds
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in M
M

(F) if and only if s divides m.

Proof: Let C be the centre of D; then D°OkF = D QC(COkF), so any non-

zero ideal intersects non-trivially with C&kF. In turn, COkF = (C®kK)IIKF,

so any non-zero ideal of COkF intersects non-trivially with COkK which

is a field by our assumption on K. So, D°®kF must be simple artinian.

We are left with the last sentence of the lemma. If D embeds

in M
m
(F), D° embeds in M

M
(F°), which is the endomorphism ring of the F

module Fm. Consequently, we can give Fm the structure of a left FOkD

module, and so, Fm is a direct sum of copies of S. The argument is

reversible.

It is important to bear this in mind, as most of the embedding

theorems will be stated in terms of the dimension over F of a simple

D°0kF module, since this actually gives us information about all possible

embeddings of D in matrix rings over F. It is also worth remembering

that the same information is conveyed by the rank as M
M

(F) module of a

simple MM(F)®kDo module, since the Morita equivalence of MM(F)&kD° and

FOkD° shows that the dimension of a simple F®kD module over F is m

times the rank of a simple MM(F)QkD0 as Mm (F) module.

Theorem 9.2 Suppose that our previous assumptions hold, and let D be a

f.d. division algebra over k; then the rank of a simple RP0kD module

over R
P

is equal to h.c.f.M{p(M)} as M runs through f.g. left RekD

submodules of free ROkD° modules.

Proof: That the rank of a simple R
P k

D module as an R module must
P

divide this h.c.f. is easily seen by considering the R
p
0
k
D
°

modules,

RPdb RM, where M is an RMkD module. We are left with the converse.

ROkD° at the full maps with respect to p over the ring R. So we can use

Cramer's rule. Let e be an idempotent in RpQkD such that (Rp0kD )e is

isomorphic to the unique simple module S over R
P
0kD . Then, by 4.3, e

is stably associated to some map between f.g. projectives induced up from

some map between f.g. projectives over R®kD , a:Q -+ P; we may choose this

map to be associated to it e . The image of of O is isomorphic to
o t

(Rp0kD ) ® S, so this is also isomorphic to the image of our map R
P
0
R
a

First, we see that R
P
QkD° is a universal localisation of
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between f.g. projectives over R
P
0kD°O.

Let M c P be the image of a over ROkD ; then the image of

this map extended to Rp0kD° is (RpOkD )M c (RPOkD
)®R

D°P. Since D
P t

centralises the action of R and RP, we may actually write this equation

as R M c R 0RP. At this point it is useful to recall that 1.10 shows that

if Npc Rs pis a f.g. submodule of R, the rank of R
P
N as R

P
module

is equal to the minimal rank of R modules N' such that N c N' c RS. In

the case we are examining, we have an RMkD module M c P, and we wish

to find the rank as Rp module of RPM c RPa P, since we know that RPM
R

is isomorphic to (RPOkD°)t ® S, and we shall be able to deduce from this

the rank of S as an R
P

module. We know by 1.10 that the rank of R
P
M as

R module is the minimal rank of an R module M' such that M c M' c P;
p - -

our final step is to show that there is an ROkD module above M having

this minimal rank; in fact, we shall see that if M' has the minimal rank,

so does DM' which is an RMkD° module since D° centralises R.

Let {1 = d0,d1...d} be a basis of D over k; then

D0M' = EdiM'. diM' is isomorphic to M' as R module because the action
i

of D commutes with that of R, and d
i
M' contains M since M is an

PAkD° module. If M1 and M2 are both submodules of minimal rank q in

p containing M, consider the exact sequence:

0+M1 f1 M2->M1®M2+M1+M2+0

which is split as a sequence of R modules since R is left semihereditary.

So, 2q = p(M1 n M2) + p(M1 + M2); but both terms on the right are at least

q, which implies that they are exactly q. So p(M1 + M2) = q, and an easy

induction shows that p(D °

We see that the rank as an Rp module of (Rp0kDo)t 0 S is

equal to the rank as an R module of the ROkD module, D M', which is

a f.g. submodule of a free module. Consequently, h.c.f.M{p(M)} as M runs

through the f.g. ROkD submodules of free modules divides the rank of S

as an R
P

module. The converse has already been noted.

Division subalgebras of simple artinian coproducts

In this section, we apply 9.2 to the problem of finding the f.d.

division subalgebras of a simple artinian coproduct amalgamating a simple

artinian subring under the assumption that conjecture 8.1 holds; since we
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have verified this conjecture in chapter 8 for a number of cases including

the simple artinian coproduct amalgamating a central subfield, this is not

unreasonable.

There is a spurious generality in dealing with the amalgamation

over a simple artinian ring, since this may be reduced to amalgamation over

a skew field instead; whilst performing this reduction we set up the notation

and names for this section.

Let S = M (E), and S
1

. = M (E.) for i = 1,2, where S and
n n. 1

S. are simple artinian rings and S lies in Si, and E. is a skew field.

Since S embeds in Si, n divides nil so let mi = ni/n; then on taking

the centraliser of Mn(k) in S1 S S2 we see that

S1 S S2 = Mn(Mm (E1) E
Mm (E2)), so we need only consider the ring

1 2

M (E 1) 0Mm (E2), since S1 S S2 is the n by n matrix ring over it.
1 E 2

We shall call the rank function on M
m

(E
1
.) modules p

1
. and the unique rank

.

1

function on R modules where R = M (E1) E Mm (E2) will be called p. Letm
1 2

m = l.c.m. {ml,m2}; then p takes values in

m

7l, and the universal

localisation of R at p, Rp, was shown in 5.6 to be a simple artinian

ring, M
M
(F), where F is a skew field; we use p' for the rank function

on Mm (F) modules.

Let C be the intersection of the centre of M (F) with E;
m

we recall that our conjecture states that either this is the centre of our

coproduct, or else, the centre is a function field of a curve of genus 0

over C. At any rate, we are assuming that it is a regular extension of C.

Theorem 9.3 We use the preceding notation; further, we assume that the simple

artinian coproduct considered satisfies conjecture 8.1. Let D be a f.d.

division algebra over C; then the rank of a simple D°aCMM(F) module as

M (F) module is h.c.f.i {pi(A,.)} as A.. runs through f.g. D
0
®CMm (E.)m

rj 7 7 1

modules.

Proof: We have R = M (El) E Mm (E2) and R = M (E) OM (E ) = M (F).
M

1 2 p m1 1 E m2 2 m

Our conditions fulfil those required for theorems 9.2 to apply. Therefore,

the rank of a simple Mm(F)QCD° module is h.c.f.M{p(M)} as M runs through
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f.g. ROkD° submodules of free RokD modules. In order to change this to

the form of our theorem, we have to deal with a special case.

Special case: Assume that E has centre. C.

Then

ROCD (MM1(E1) E Mm2(E2))OCD = (Mml(E1)OCD) EUCDo(Mm2(E2)OCD ). Since

E has centre C, E11CD0 is simple artinian, which allows us to use Bergman's

coproduct theorems. By 2.2, any ROCD° submodule of a free module has the

form M12(Mm (E1)QCDo)(RACD ) ® M20(Mm (E2)QCD°)(ROCD°), where M. is a

1 2

submodule of a free m (Ei)QCD module. We see that p(M) = p1(M1) + p2(M2),
1

and so, since the rank of a simple Mm(F)OCD° module as Mm (F) module

equals h.c.f.M{p(M)} as M runs through f.g. submodules of free R11CD0

it is also equal to h.c.f.i.j{pi(Bij)} as Bij runs over f.g. submodules

of free Mm (Ei)0CD modules.
1

Given any f.g. Mm (Ei)0CD° module, Ai., it has a presentation:
1 J

O -+ Bij -+ s(Mm
1

(Ei)®CD ) -' AiJ . 0

and so, it is clear that h.c.f.
1J
..{p

1
.(A 1.,J )} as A 1.,J runs through every

f.g. module over Mm (Ei)QCD is equal to h.c.f.{pi(B,j)} as Bi runs
1 J

through f.g. submodules of free modules.

Before passing to the general case, we note the following corollary

which is of importance for a reduction to the case we have just dealt with.

Corollary 9.4 Let S be a simple artinian C algebra, and let D be a f.d.

division algebra over C; then the rank of a simple (SoC(x))OCD° module as
C

S8C(x) module is h.c.f.
J

,{pS(A
]

.)), where pS is the rank function on S

modules, and A
J

, runs through the f.g. SOCD° modules. In particular, if

the centre of S is a regular extension of C, the rank of a simple

(S
8
C(x))OCD module over S o C(x) equals the rank of a simple SMCD°

C
module as S module.
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Proof: We saw in theorem 8.3 that the centre of S o C(x) lies in C, and
C

so, must be C; therefore, we can apply the first case to prove our corollary.

The last sentence follows since SOCD is simple artinian in this instance.

General case

We return to the general case. We assumed that the centre of

M (E1) o M (E2) is either C or else the function field of a curve ofm
1 E

m2

genus 0 over C. In either case, it is a regular extension of C, and so,

by the last part of 9.4, the rank of a simple (Mm (E1) o Mm (E2))QCD0
1 E 2

module as Mm (E1) o Mm (E2) module is the rank of a simple
1 E 2

(M (E1) o m (E2) 0 C(x))QCD module as an M (El) 0 Mm (E2) o C(x))m
1 E 2 C

m
1 E 2 C

module.

We shall show that M (E1) o M (E2) o C(x) is isomorphic tom
1 E M

2 C

the ring (M (E ) o C (x) ) 0 (M (E ) o C (x)) .
m1 1 C E o C (x) m2 2 C

C

We note the two factors in this coproduct and also the amalgamated

skew field all have centre C bg 9.3, so that we may apply 9.4 to each of

the factors, and then our first case to the whole coproduct in order to find

the rank of a simple (Mm (F) o C(x))QCD° as Mm (F) o C(x) module, which is
C C

the rank of a simple Mm(F)OCD° module as Mm(F) module, the number we wish

to find.

Mm (E1) 0 M (E2) o C(x) is the universal localisation of the
1 E

m2
C

hereditary ring T = Mm (El) U Mm (E2) u C[x] at the unique rank function
1 E 2 C

on T.

Consider the subring M (E.) u C[x] = M (E.) u (E u C[x]),
mi 1 C mi 1 E C

which has the universal localisation M (E.) o (E o C(x)). Since
m

1
1 E C

M (E.) i C[x] has a unique universal localisation that is simple artinian,
m,

1
1 C

this shows the isomorphism M (E.) o C(x) M (E,) o (E 0 C(x)).
mi i C mi i E
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Let E.
i

for i = 1,2 be the collection of full maps between f.g.

projectives with respect to the unique rank function on Mm (Ei) u C[x],
i C

and let E be the union of these maps induced up to T. We consider the

ring TE and the ring V, where T' is the ring

M (E ) o C(x)) U (M (E ) o C(x)). We show that T is isomorphic
mi 1 C E o C (x) m2 2 C

E

C

to V.

There is a homomorphism from TE to T', sending Mm (Ei) to
i

M
m

(E
i

) by the identity map and x to x. Under this homomorphism, all

elements of E are inverted, so that it extends to a homomorphism from TE

onto T', since its image contains M (E.) o C(x) for i = 1,2.
m 1 Ci

Conversely, TE is generated by a copy of Mm (E1) o C(x) and
i C

a copy of Mm (E2) o C(x), which have as common subring E o C(x); there-
2 C C

fore, there is a homomorphism from T' to TE which is clearly inverse to

the homomorphism in the last paragraph.

T' has the universal localisation

M (E ) o C(x)) o (M (E ) 0 C(x)) which must be the universal
ml

1 C E o C (x) m2 2 C

C

localisation of T that is simple artinian; this is Mm (E1) o Mm (E2) 0 C(x),
1 E 2 C

which proves the isomorphism we need.

Since E o C(x) has centre C, we may apply the first part of
C

the proof of this theorem to conclude that a simple

(M (E ) o C(x)) o (M (E ) o C(x))® D° module has rank as
ml

1 C E o C (x) m2 2 C C

C

(M (E ) o C(x)) 0 (M (E ) o C(x)) module equal to
ml 1 C E o C(x) m2 2 C

C

h.c.f. {p1(A1), p2(A2)} where A. is the unique simple

(Mm (Ei) o C(x))OCD° module, and pi is the rank function on
i C

(M (E
i

) o C(x)) modules.
mi C
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By 9.4, pi(Ai) is equal to h.c.f.
J
,{pi(AiJ.)} as AiJ, runs

over f.g. M (E)0 D° modules.
m i, Ci
Putting this together, we find that the rank of a simple

(Mm (F) o C(x))QCDo module as Mm(F) module is h.c.f.i/j{pi(Aij)} as Aij
C

runs through f.g. Mm (EI)®CD° modules. We have already remarked that if
i

conjecture 8.1 holds for M (E1) ° M (E2 ), then this number is the samem1
E

m2

as the rank of a simple Mm(F)QCD module as Mm(F) module by 8.4. This

completes the proof.

As we saw in 9.1, this result gives us all the embeddings of D

in Ms(F) for varying s. The major part of the rest of this chapter

illustrates what exactly this theorem means. Before ending this section, we

notice the following simple corollary.

Theorem 8.5 Suppose that the simple artinian coproduct Mm (E1) o Mm (E2)
1 E 2

satisfies the conditions of theorem 8.3; then the rank of a simple

D0IDC(Mm (El) o Mn(E2)) module over m (E1) o m (E2) is the rank of a
1 E 1 E 2

simple DO C(Mm (El) o M (E2 )) module over Mm (El) o M (E2).

1 C

m
2 1 C

m
2

Proof: Compare the formulas given by 8.3; they are identical.

Finally, we could have stated 8.3 for the simple artinian co-

product of arbitrarily many simple artinian E-rings Mm (Ei.) provided that
i

l.c.m. {mi} exists. The proof does not differ from that given in 8.3.

Division subalgebras of skew field coproducts

Here, we shall discuss more explicitly the consequences of

theorem 9.3; we shall organise this by discussing when a division subalgebra

of a skew field coproduct must be conjugate to a division subalgebra of one

of the factors. This is in analogy to what is known to hold for group co-

products. It usually fails here, but our investigation does have some

interesting consequences.

By 9.5, we may as well restrict our attention to skew field co-

products over a central subfield k, since the division subalgebras of skew
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field coproducts amalgamating other skew subfields may be reduced to this

case whenever we can calculate them. By 8.3, the only case that at present

eludes us is the skew field coproduct of two skew fields E1 and E2 both of

which are of dimension 2 on either side over the amalgamated skew subfield

E. For much of this section, we shall further restrict our attention to the

case where each of the factors of the skew field coproduct over the central

subfield k are f.d. over k.

Theorem 9.6 Let {Ei: i = 1 to n} be f.d. division algebras over k, and

let t = l.c.m.i {[E.:k]}. If D is a f.d. division subalgebra of o Ei,
k

then [D:k] divides t.

Proof: [D:k] divides [Aij :k] as Aij runs through f.g. D°akEi modules.

[A.
1J 13 1 1
.:k] = [A..:E.][E.:k] which divides [Aij:E.1 ]t, If D embeds in

k
oEi,

h.c.f.i'j{[Aij:k]} = 1, and so, [D:k] divides t.

The next result has slightly more general hypotheses, and

clearly applies to the cases we are considering.

Theorem 9.7 Let {E1.: i = 1 to n} be skew fields satisfying a polynomial

identity, and let D be a f.d. division subalgebra of oE.; then the poly-
k 1

nomial identity degree of D divides l.c.m.{p.i. degree E,
1 1

Proof: Let p = l.c.m.i {p.i.degree Ei}. Let A13 . be a D OkE. module,

and let m.. = [A..:E,]. Then the centraliser of the action of E. on A..
13 1J 1 1 1J

is isomorphic to M (E°), and D° embeds in it. By Bergman, Small (75),
m.. 1
13

p.i.degree D = p.i.degree D° must divide p.i.degree M
m
1J

(E
1
.) which is

.,

just m (p.i.degree E.). If D embeds in oE., h.c.f.. {M,.} = 1; so
1J 1 k 1 1,J 1J

that p.i.degree D divides p.

Our next theorem is more by way of example to show that the

bounds in 9.6 and 9.7 are in general best possible.

Theorem 9.8 Let D1 and D2 be f.d. division algebras over k such that

[Dl:kJ is co-prime to [D2:k]; then D
1
0
k
D
2

embeds in D1 o D2.
k
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Proof: We have a simple Di0k(D10kD2)° module of dimension [D.:k] over

D. for i x j; by 9.3, there is a simple (D1 k D2)8k(D1'kD2)° module of

dimension 1 over D1 o D2; that is, D1®kD2 embeds in D1 o D2.
k k

Our next result in contrast to the last one gives us a number of

cases where a division subalgebra of a skew field coproduct must be conjugate

to a division subalgebra of one of the factors.

Theorem 9.9 Let E be a f.d. (possibly non-commutative) Galois extension

of k; then any f.d. division subalgebra of E o k(x) is conjugate to a
k

division subalgebra of E.

Proof: Let C be the centre of E; then C is a Galois extension of k

with Galois group G, where G is the group of outer automorphisms of E

over k.

D x.Si, where each Si is a simple algebra over C, and°0 C =
k i

the group G acts transitively on this set.

D°0kE (D @
k
C)OCE Z- x(Si0CE), and the group G

i i

permutes the simple algebras S
i
Q
C
E transitively.

Therefore, [Ai:E] = [A, :k] where A. is a simple S
i
0
C
E

module, and the dimension of a simple D ®k (E o k(x)) module must equal
k

the dimension of any simple D OkE module, by 9.3, since they are all the

same. So D embeds in E o k(x) if and only if D embeds in E.
k

Since the Noether, Skolem theorem states that all embeddings of

a f.d. division algebra in a central simple artinian k-algebra are conjugate,

and E o k(x) has centre k, any embedding of D in E o k(x) is conjugate
k k

to its embedding in E.

We shall restrict our attention for the time being to the co-

product of commutative f.d. extensions of k, and of rational function

fields in 1 variable over k. 9.7 shows that any f.d. division subalgebra

of such a coproduct must be commutative. We are able to extend 9.9 a little

in this context.

Theorem 9.10 Let E be a normal extension of k; then any f.d. extension

of k in E o k(x) is conjugate to a subfield of E.
k
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Proof: Let C be a commutative subfield of E o k(x), [C:k] < ' ; then
k

h.c.f. {[Ai:E]} = 1, where A. runs through field joins of E and C

inside the algebraic closure of k. But since E is normal, there is a

unique such field join over k, and so, [Ai:E] _ [A
J
.:E] = 1. That is, C

embeds in E. Conjugacy follows from the Noether, Skolem theorem as before.

Before we use these results to get further restrictions on the

f.d. division subalgebras of skew field coproduct of commutative extensions

we need some embedding lemmas for general skew field coproducts. In order to

explain the proof cleanly we shall need the next definition.

Consider a tree whose edges are labelled by skew fields and whose

vertices are labelled by rings so that if Rv is associated to the vertex

v and D
e

is the skew field associated to an edge e on which v lies

there is a specified embedding of D
e

in R
v

; the tree coproduct associated

to this tree of rings is generated by copies of the vertex rings R
v

together with the relations that if ie and Te are the vertices of the

edge e then R1e n RTe = De; it is easy to see that this tree coproduct

may be got by a series of coproducts amalgamating skew fields and so if all

the vertex rings are skew fields the tree coproduct must be a fir by Bergman's

coproduct theorems.

Lemma 9.11 1/ Let {Ei:i = 1 to n}, {Fi: i = 1 to n} be families of skew

fields such that E. 2 F.; then oE. embeds in OF..
1 1 k 1 k 1

2/ of over a finite indexing set embeds in E o k(x).
k k

Proof: The ring u E. embeds in u F.; the universal localisation of U F.
k 1 k 1 k 1

at the full matrices over uE. is the tree coproduct of rings associated to
k 1

the tree of rings:

F
n

k

E.

F.
1
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which is a fir since the vertex groups are skew fields; its universal skew

field must be oF. since this is the only universal localisation of oF.

that is a skew field.

For the second part, of over a finite indexing set embeds in
k

of over the countable indexing set M; this has the automorphism a of
k
infinite order that shifts the indexing set by 1; we form the skew field

(oE)(x:(Y) which it is easy to see is isomorphic to E o k(x).
k k

We can put these results together to find a useful restriction

on the f.d. extensions of k lying in the skew field coproduct of f.d.

commutative extensions.

Theorem 9.12 Let {Ei:i = 1 to n} be a finite collection of f.d. extensions

of k, and let D be a f.d. division subalgebra of oE.; then D is
k 1

commutative, its dimension divides l.c.m.{[E1.:k]}, and it can be embedded in

the normal closure E of a field join of the fields E
1
..

Proof: The first two conditions follow from 9.5 and 9.6. We have shown that

oE. embeds in E o k(x), and now we can apply 9.10.
k 1 k

We give an example to show that these conditions are not

sufficient for a field to embed in a given skew field coproduct.

Example 9.13 Consider o Q (V2,,13) is

Q

itself, and is a subfield satisfying the consequences of 9.11. But

and are both fields, so that by 9.3,

does not embed in o

As has become clear, the coproduct of separable extensions does

not behave particularly well with respect to the property that f.d. division

subalgebras are conjugate to a subfield of one of the factors; it comes as

a pleasant surprise that purely inseparable extensions work extremely well

in this context.

Theorem 9.14 Let oEi be the skew field coproduct of the skew fields E.;
1

if C is a purely inseparable extension of k lying in oEi, it is
k
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conjugate to a subfield of some Ei.

Proof: Let p be the characteristic of k; we shall show that the dimen-

sion over E. of a simple COkE. module is a power of p, so that C

embeds in oEi if and only if it embeds in some Ei; as usual, the Noether,

Skolem theorem completes the proof.

Let C. be the centre of E
i

; then the centre of COkEi is

CekC., which is a local artinian ring, because C is a purely inseparable

extension of k, and so, has a unique field join, C', with any field

extension, Ci, of k. C' is a purely inseparable extension of Ci, so

[C':Ci] is a power of p. C'OkEi is the simple artinian image of COkEi

modulo its radical, which implies that the dimension of a simple CekEi

module over E. must divide [C':C.] which is a power of p. We conclude

the proof as was indicated previously.

This fits well with earlier results.

Theorem 9.15 Let oEi be a skew field coproduct of finitely many f.d.
k

purely inseparable extensions of k; then any f.d. subfield of oEi is
k

conjugate to a subfield of one of the factors.

Proof: By 9.12, any subfield must lie in the normal closure of a field join

of the fields Ei. But this is simply the unique purely inseparable field

extension of k generated by the fields E
i
.. So, any such subfield is

purely inseparable, and, by 9.14, it must be conjugate to a subfield of one

of the factors.

There is a further situation, where one could hope to prove that

a f.d. subfield of a skew field coproduct of commutative fields would be

conjugate to a subfield of one of the factors; when each factor has dimension

p over k, where p is a prime. This turns out to be false in general, but

the set of primes for which it is true is an interesting collection. The next

result depends on the classification of finite simple groups, since we use

Cameron's classification of doubly transitive permutation groups (Cameron 81).

Theorem 9.16 Let p be a prime not equal to 11 or (qt-1)/(q-1), where

q is a prime power, and t > 2. Then, if {Ei} is a finite collection of

field extensions each of dimension p over k, any f.d. subfield of oE.
k 1
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is conjugate to one of the factors. For the proscribed primes, there are

counter-examples.

Proof: Suppose that E embeds in oE., [E:k] < -, and that E * Ei for

any i. By 9.5, [E:k] = p; and E cannot be purely inseparable by 9.14.

So, it is separable.

Since E embeds in oE., there is some i for which
n k i

EOEi = x Fi., n ? 2. Since E * Ei, [F..:E.] i 1 for any j. Because

j=l
7

E[F..:E] = p, h.c.f. {IF:E.]} = 1, so that E lies in E. 0 E. which
17 i n i.

1 1 k i
implies that E lies in the normal closure, N, of E. by 9.10. So, E.

is a separable extension of k. Let G be the Galois group of N over k.

Since G acts faithfully on the roots of an irreducible polynomial for a

generator of Ei over k, p divides IGI, but p2 does not. Since

[Ei:k] = p = [E:k], we see that the subgroups H' and H that fix E.

and E respectively are inconjugate p-complements in G; therefore, by

Hall's theorem, G cannot be soluble.

The actions of G on the right cosets of H and of H' define

non-isomorphic faithful transitive actions of G on a p-element set. By

Burnside's theorem (11) we see that transitive actions of an insoluble group

on a p-element set are doubly transitive. Cameron (81) shows that this can

happen only when p = 11 or is of the form (qt-1)(q-1) for a prime power

q, and t > 2.

For p = 11, there are two different actions of PSL(2,11) on

11 points; for p = (qt-l)/(q-1), the actions are given by the action of

PGL(q,t) on the points, and dually, on the hyperplanes of projective space.

We have reached a contradiction provided that p x 11, or

(q -l)/(q-1) for a prime power q and integer t > 2. So we need to

examine what actually happens in these cases. Given a group G having two

such faithful actions on p-element sets, we have two inconjugate p-complements.

We may find a Galois extension of fields N D k, having Galois group G,

and the two p-complements give us two non-isomorphic field extensions of k,

both of dimension p over k with isomorphic normal closure. Call them E

and E'; then E embeds in E' o E', and vice versa. Our first example

occurs when p = 7.
k

It is of some interest that at present we are unable to tell
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whether the skew fields E o E, E o E' and E' o E' where E and E'
k k k

are as described in the last paragraph of the proof above are isomorphic.

The invariants that we shall develop in chapter 10 are not good enough to

settle this point.

Transcendence in skew fields

One question that arises naturally is whether the coproduct of

skew fields having no elements algebraic over k also has this property.

We shall present a counter-example to this in the course of this section,

as well as giving a counter-example to a conjecture of Cohn and Dicks (80),

connected to suitable ideas for transcendence in skew fields. We shall also

give the definitions for notions of transcendence that do behave well for

the skew field coproduct. First, however, we present a positive result in

the direction of our original question.

Theorem 9.17 Let C be a commutative subfield of oE, such that
k 1

[C:k] = pn for some prime p; then one of the skew fields Ei contains

elements algebraic over k.

Proof: We lose nothing by assuming that C is a primitive extension of k,

C = k(a).

Let Li be the centre of E
i

; if C®kLi is not a field, the

irreducible polynomial of a over k splits over Li and the co-

efficients of the factors generate an algebraic extension of k in Li ,.

So, assume that CO
k
L
i

is a field; then C"kEi = (COkLi)QL E. is simple
y

artinian, and so, the dimension of a simple C@kE, module over E. divides

[C:k] = pn, and must itself be a power of p. Since C embeds in oE
k it

11.4 shows that the h.c.f. of these numbers is 1, and therefore, there is

some i for which the simple COkEi module has dimension 1 over Ei; that

is, C embeds in E
i
..

Of course, we cannot conclude that C embeds in some E.
i

even

when [C:k] is prime, as we saw in 9.16.

We can re-phrase 9.17 in the form that an algebraic extension of

k lying in the skew field coproduct of two skew fields having no algebraic

elements must have dimension divisible by at least two primes. We shall find

such a subfield of dimension 6.
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Example 9.18 Let E m k be an extension of fields such that [E:k] = 6,

and there are no intermediate fields; this occurs, for example, if the Galois

group of the Galois closure of E over k is S6. We shall construct a

pair of skew fields E1 and E2 such that E embeds in E1 o E2 although
k

neither E1 nor E2 have any elements algebraic over k.

Let E1 be the skew field such that M2 (E 1) = M2 (k) o E, and
k

let E2 be the skew field such that M3(E2) M3 (k) o E. Certainly, E
k

embeds in E1 o E2 since there is a simple ERkEI of dimension 2 over El,

k
and a simple E®kE2 module of dimension 3 over E2. Since h.c.f.{2,3} = 1,

it is clear that E embeds in E1 o E2. It remains to show that E1 and
k

E2 have no algebraic elements over k.

Let C be a commutative subfield of E1 such that [C:k] = n.

Since C lies in El, and M2(E1) = M2(k) o E, there is a simple
k

M (k) 0 E module of rank / over M (k) 0 E, so that by 11.4,
2

2= h.o.f. {n/2, [C.:Ell as C. runs through simple COkE modules. So n

must be odd, and the equation 1 = h.c.f. {n,[C
J
.:E]} holds. Since

[COkE:E] = n, n is a sum of the numbers EC
i
:Ell and so,

1 = h.c.f.{[C
J
.:E]}, which is equivalent to the hypothesis that C embeds

in E 0 E and n is odd. By 9.6, n divides 6, so n = 1,3. Since
k

h.c.f.{[C.:Ell = 1, it follows in either case that for some j, [C.:E] = 1,

that is, C embeds in E. By assumption, E has no non-trivial subfields,

so that C = k.

We have shown that E1 has no non-trivial algebraic extensions

of k inside it; an entirely similar argument shows that E2 has no non-

trivial extensions either. Thus E1 o E2 is a coproduct of skew fields both
k

of which have no algebraic elements over k except for those in k, but

the coproduct does have non-trivial algebraic elements.

We give some variants of the definition of transcendence that do

behave well with respect to the coproduct construction, and discuss the

connections of these notions with those in (Cohn, Dicks 81).

We define a skew field to be n-transcendental over a central sub-

field k if for all f.d. division algebras D over k of p.i. degree

dividing n, DokE is a skew field. We define a skew field to be totally

transcendental over k if it is n-transcendental for all n. It is clear
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that n-transcendental implies that there are no algebraic elements over k

that are not in k. The skew fields of example 9.17, E1 and E2, are not

even 1-transcendental.

Theorem 9.19 The coproduct of n-transcendental skew fields over k is n-

transcendental. Therefore, the coproduct of totally transcendental skew

fields is totally transcendental.

Proof: The proof is clear from 9.3.

We consider the definitions of Cohn and Dicks. A skew field E

is said to be regular over k, if EOkK is a domain for all commutative

fields K over k. This is shown in their paper to be equivalent to EQkk

is a skew field where k is the algebraic closure of k. So regular is

equivalent to 1-transcendental.

Cohn and Dicks define k to be totally algebraically closed in

E if EOkL is a skew field for all simple algebraic extensions L of k.

They ask whether this together with the condition that EOkkp
_

is a skew

field where p is the characteristic of k, and kp
_

is the maximal

purely inseparable extension of k imply that E is 1-transcendental. We

shall find that there are a number of counter-examples to this that arise as

a consequence of the next theorem, which is a perhaps more natural result.

Theorem 9.20 Let F D k be a normal extension of commutative fields such

that [F:k]
n

= p where p is a prime. Let D be the skew field such that

M (D) = Mq(k) o F, where q = pn-l Then for any algebraic extension Eq
k

of k, DOkE has zero-divisors if and only if E D F.

Proof: Let [E:k] = e; as usual, we shall use 9.3. The rank of a simple

M
q
(E) module as M

q
(k) module is e/q. The simple modules for EOkF

correspond to field joins of E and F, and there is a unique such field

join up to isomorphism over k since F is a normal extension of k. We

have the following diagram, where the dimension of the extensions is the label

of the edges.
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n-m
p

EF

E - F

n-m
p

We see that [EF:F] = e/pm and so the rank of a simple M (D)Q kE

module is h.c.f. {e/q, a/pm}. DOkE has zero-divisors if and only if the

rank of a simple Mq(D)QkE module is less than e/q. Since e/q divides

e/p or vice versa, this number is less than e/q if and only if e/p

divides e/q and is not equal to it. But m <_ n, and q = pn-l, so this

happens exactly when m = n. In this case, [EF:k] = e, so that E

contains F.

Theorem 9.21 Let F n k be a normal extension of k that is neither simple

nor inseparable, and let [F:k]
n

purely = p Let D be the skew field such

that M q(D) Mq(k) o F, where q = pn-l Then Dokkp is a skew field,
k

and k is totally algebraic closed in D, although D is not 1-

transcendental over k.

Proof: In 9.20, we showed that EQkD has zero-divisors for a f.d. extension,

E, of k if and only if E contains F. If E contains F, it cannot

be a simple extension nor can it be purely inseparable. Therefore, DOkk

is a skew field, and k is totally algebraically closed in D, but D is

not 1-transcendental over k.

We have used skew fields D of the form M (D) M (k) 0 Et t
k

where E is a f.d. commutative extension of k as our main construction

recently. Before leaving them, we mention one further property that has some

interest. Let [E:k] = n, where E is a simple extension E = k[a]. Let

t divide n; and let D be the skew field such that Mt(D) = Mt(k) 0 E.
k

Then the dimension of a simple DMkE module over D is t as one checks

from 9.3. That is, the minimal polynomial of over k splits over D into

n/t factors of length t.
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Generic partial splitting skew fields

Amitsur (55) and Roquette (62) developed the notion of the

generic splitting field of a central simple f.d. algebra over a field k.

This construction has a natural non-commutative analogue, which we shall

develop and study in the course of this section. We shall investigate its

f.d. division algebras using the techniques developed earlier for such

questions.

Let D be a central division algebra over the field k,

[D:k] = n2, and let m divide n2. A skew field E is said to be an m-

splitting skew field of D if DOkE = Mm(S) for some simple artinian ring

S. A commutative field can only be an m-splitting field when m divides

n; however, D
0

is an n2-splitting skew field of D. There are universal

or generic m-splitting fields that are commutative for dividing n, and

we intend to show that there are suitable skew analogues of these construc-

tions. We shall construct a ring that represents the functor

Hom(Mm(k),DQk_) in the category of k-algebras, and then show that it has a

universal skew field of fractions, which will be the skew field that we are

interested in.

Theorem 9.22 The functor Hom(Mm(k),D®k-) is representable by the k-algebra

R, where D k m(k) = DO R. In particular, E is an m-splitting skew field

for D if and only if Hom(R,E) is not empty.

Proof: Let a e Hom(M(k)),DOkA) for some k-algebra A. Then

l u a:D k Mm(k) -> DMkA is a homomorphism and must take the centraliser of

D in the first ring to A, which gives us a map from R to A.

Conversely, given B:R -+ A, we have a map 1 OS:D&kR -* DOmA,

(k) u D = DOkR S DOkA.which induces a map S:M
m
(k) - M

m k

The two processes above are mutually inverse, so R represents

the functor as we wished to show. The last sentence is trivial.

We shall look at R a little more closely, but first we tighten

up the notation. The ring representing the functor Hom(Mm(k),DOk-) is

denoted by R(D,m).

Theorem 9.23 R(D,m) is an hereditary domain whose monoid of f.g. projectives

is generated by the free module of rank 1, and a projective P satisfying
n2

the relation R p , and no other relations. Therefore, it has a unique
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rank function on its f.g. projectives, and this rank function takes values

in Z. So, it has a universal skew field of fractions.

Proof: DOkR = D k Mm(k), so

Mn2(R) = D Ok(DO R) = D Ok(D k Mm(k)) Mn2(k) U Mm(D
k

Do
where in this iso-

morphism R is the centraliser of the first factor.

By Bergman's coproduct theorems, 2.18, R is a domain and all

f.g. projectives are induced up from the factors in the coproduct representa-

tion Mn2(R) = Mn2(k) Do m(D). Morita equivalence shows that the monoid

of f.g. projectives is as stated, and R is hereditary.
2

m nWe have shown all but the last sentence. Since P , its= R

rank under any rank function can only be n2/m, so that there is a unique

rank function, and the universal localisation of R at this rank function

is a skew field.

Let U(D,m) be the universal localisation of R(D,m) at the

unique rank function. We shall call it the universal m-splitting skew field

of D. We wish to investigate the f.d. division algebras over k that embed

in it.

Theorem 9.24 Let U(D,m) be the universal m-splitting skew field of D;

then the f.d. division subalgebras of U(D,m) are isomorphic to the f.d.

division algebras E. of D° such that h.c.f.{[Ei:k],n2/m} = 1. In

particular, if p divides m implies that p divides n2/m for all primes

p, U(D,m) has no elements algebraic over k except for those in k.

Proof: We recall from 9.23 that U = U(D,m) is the universal skew field of

fractions of R, where M n2(R) = M 2(k) uM (D ). Hence,
n Do M

Mn2(U) Mn2(k) o Mm(D ). By 9.3, the rank of a simple E kMn2(U) module
D°

over Mn2(U) is given by h.c.f.{[E:k]/n2,[S:D°]/m} where S is the unique

simple E 0kD module. So, [S:D ] divides [E:k].

If E embeds in U, we know that this number is 1/n2, which

happens if and only if [S: D] = 1, and h.c.f.{[E:k]/n2,1/m} = 1/n2, which

is equivalent to the two statements:
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1/ E embeds in Do, and

2/ h.c.f.{[E:k],n2/m} = 1.

This proves all but the last sentence, which is an easy corollary.

It occurs for example, if n = m.

Division subalgebras of the universal skew fields for rings with
weak algorithm

This final section is rather technical; we use 9.2 to describe

the f.d. division subalgebras of the universal skew field of fractions of a

ring with weak algorithm. For the record, we define what a ring with weak

algorithm is; however, the reader is more likely to gain some understanding

of the notion by reading chapter 2 of (Cohn 71). Rings with weak algorithm

are a generalisation of tensor rings of bimodules over skew fields.

Let R be a ring with a filtration over N; that is, we have

a function v from R to N such that v(x) >_ 0 for x x 0; v(O) _ - ;

v(x-y) <_ max{v(x), v(y)}; v(xy) <_ v(x) + v(y); v(1) = O.

Let {ai:i E I} be a subset of the elements of R; we say that

it is right dependent with respect to the filtration v if there exist

elements {b1.:i E I} that are almost all 0, such that

v(Eaibi) < maxi {v(ai) + v(bi)} or else, some ai is O.

We say that an element a of R is right dependent with respect

to v on the set {a
1
.} if there exist {b1.:i E I} almost all 0 such

that v(a- Ea.b.) < v(a) whilst v(a.) + v(b.) <_ v(a) for each i.
i l I 1 1

We say that R satisfies the weak algorithm with respect to

the filtration v, if given any set of elements {ai:i = 1 to n} right

dependent with respect to v such that v(a.) <_ v(a.) for i < j, then
1 J

some a
1

, is right dependent with respect to v on the preceding set

{al,a2...ai-1}.

We shall assume the results of chapter 2 in (Cohn 71) throughout

this section. In particular, R is a fir whose universal skew field of

fractions we call U. RO, the set of elements of whose filtration is 0

together with 0 forms a skew field, and R is a two-sided Ore domain only

when it takes the form R = R0[x;a,d], where a is an automorphism and d

is a (l,a)-derivation. When R is not a two-sided Ore domain, the centre

of U lies in R
0

by 8.1, since RO is the group of units of R. When

R= RO[x;a,8] we shall need to use different techniques which we present at

the end of the section. In the case where R is not two-sided Ore, let K

be the centre both of R and U.
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Theorem 9.25 Let R be a ring with weak algorithm with universal skew field

U and Oth term in its filtration RO; let D be a f.d. division K-algebra.

Then the dimension over U of a simple D°OKU module is equal to

h.c.f. {[N.:RO]} as N. runs through the f.g. D aKRO modules.

Proof: By 9.2, the dimension of a simple D°OKU module is given by

h.c.f. {[M.:R0]} as M3 runs through f.g. D QKR submodules of free

modules. For ease of notation, we shall consider left D, right R bi-

modules on K-centralising generators, since these are clearly the same

thing.

We recall that R is filtered by

R0 c R1 C R2 c ...... c R, URi = R.

Let F be a free left D, right R bimodule on the set X,

which we filter by

DXRO C DXR1 C DXR2 C ...... C DXR = F.

For f E F, we define v(f) = min {r:f E DXRr}. Let M be a f.g. left D,

right R sub-bimodule of F. We construct a basis for M as an R-module

from which it will be clear that the dimension of M as an R-module is a

sum of the numbers [N.:ROI for D, RO bimodules Ni.

We choose our basis by induction. Let MO = 0. Suppose that at

the ith stage we have a D, R submodule of M generated as R module by

elements {a.} lying in DXR such that {a,} is a basis of this module,
n

Mi-1, and no element of M - Mi-1 lies in DXRn, where DXRn is minimal

subject to containing a
j,

Let A, = {a:a E M - Mi-1, v(a) is minimal}. Since Mi-1 and

M are invariant under the action of D, it is clear that A. + Mi-1/Mi-1

is a left D, right R0 bimodule; moreover, it is a consequence of the

weak algorithm that if M. = A.R + M
i-1,

a basis for A
1
. + M 1.-1 /M

i-1
over

1 1

R0 together with the set {a.}
J

is a basis for Mi as R module.

Since M is f.g., M = Mm for some m, and [Mi:R] is finite

for all i. But it is clear that [Mi+1:R] - [Mi:R] is equal to the dimen-

sion of some D, R0 bimodule. So, we see that the dimension of a simple

D, U bimodule is equal to the h.c.f.{[M:R]} for f.g. left D, right R

bimodules, which must be divisible by h.c.f.{[Ni:R0]} for f.g. D, R0
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bimodules by our argument. However, given a D, R0 bimodule N, we con-

struct the D, U bimodule NOR U. It is clear that [NOR U:U] = CN:RO],
o O

and so, the dimension over U of a simple D, U bimodule must divide

h.c.f.{CNi:R0]} which forces equality.

To complete this section, we shall deal with the two-sided ore

case. We recall that in this case, R = ROCx;a,d] where R0 is a skew field,

a is an automorphism and 6 is a (l,a) derivation.

Theorem 9.26 Let U be the universal skew field of fractions of R0Cx;a,61.

Let K be the intersection of the centre of U with R0. Then any f.d.

division K-algebra lying in U is isomorphic to a skew subfield of R0.

Proof: We shall show that there is a valuation on U trivial on R whose
O

residue class skew field is identified with R0. If D is a f.d. division

K-algebra in U, the valuation must be trivial on D since it is a f.d.

extension of K, and so, the valuation induces an embedding of D in R0.

The construction of the valuation essentially occurs on p.18 of

Cohn (77). We summarise it briefly here.

Set y = x-1 and write out the commutation formula:
a 6 a 6rx=xr +r , so yr= ry+yry.

The set of power series over R0 in y with co-efficients on

the left and the stated commutation rule (which allows us to re-write any

expression in R0 and y as a power series of the given form) is a

principal valuation domain; the ring R0Cx;a,6] embeds in its skew field

of fractions by x -> y-1. The residue class skew field of the valuation

is R0, and the valuation is trivial on R0 as we wished, so our proof

is complete.
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10 THE UNIVERSAL BIMODULE OF DERIVATIONS

When studying a homomorphism of commutative rings :R + S, it

is often useful to look at the module of relative differentials of S over

R. There is a non-commutative analogue of this construction, the universal

bimodule of derivations, which, in many situations of interest to us here

is very powerful. It will enable us to find useful numerical invariants of

certain skew field coproducts, that allow us to distinguish between some of

them; in particular, we shall be able to distinguish between free skew fields

on different numbers of generators. On the way, we shall be able to

characterise those epimorphisms from an hereditary k-algebra to skew fields

that arise as universal localisations by the associated map on the bimodule

of derivations over k.

The results in the first section of this chapter from 10.4 to

10.6 that calculate the universal bimodule of derivations for certain

universal constructions are all from the work of Bergman and Dicks (75,78).

Calculating the universal bimodule of derivations

In the commutative case, we look at derivations from the commuta-

tive ring to modules over it, that vanish on a given subring; the natural

non-commutative generalisation of this is to look at derivations to bimodules

over the ring; if R is an R0-ring we are interested in derivations that

vanish on the image of R0. On general principles there is a universal such

derivation 6:R i C
RO

(R); that is, the functor Der
R0

(R,M) which associates

to a bimodule M the set of derivations from R to M that vanish on R0

is naturally isomorphic to the functor Horn R-bim,(CRO(R),M) where the

derivation associated to a particular homomorphism a:CR (R) - M is the

composite 6a. We can construct the bimodule in the following way: for each

element r of R, we have a generator 6r, and we impose the relations

6s = 0, for s in the image of R0, 6(r1 + r2) = 6(r1) + 6(r2), and
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6(r1r2) = r16(r2) + 6(r1)r2. It is clear that the map 6:R -> QRO (R) has

the desired universal property; however, the nature of this bimodule is

opaque from this description, so we shall first give an alternative

description, and then we shall use it to simplify our presentation above.

Our new description gives us a useful connection between the universal bi-

module of derivations and homology.

Theorem 10.1 Let R be an RO-ring; then there is an exact sequence:

O- (R) +Ro R m R1 O,
RO RO

where m is the multiplication map, and the universal derivation in this

representation is given by 6(x) = x0l - l&x.

Proof: Certainly, the map from R to ker(m) given by d:x -* x0l - lox

is a derivation vanishing on R0. So the composite of this derivation with

any bimodule map gives a natural transformation from HomR-bimod(ker(m),-)

to the functor DerR (R,-), which must be injective since the kernel of m
O

is generated by the elements x0l - lox.

Given any derivation vanishing on R0, d':R - M where M is

an R,R bimodule, we define a bimodule homomorphism from ker(m) to M

by the formula ad,(Exieyi) = Ed'(xi)yi = -Ex id'(yi), which works because

d' is a derivation and Exiyi = 0. From these equations, it is clear that

this map is a bimodule homomorphism, and that d' = dad,; so the derivation

d:R - ker(m) has the correct universal property, and by the uniqueness of

an object representing a functor, we see that our theorem holds.

We can simplify our previous description a little using this

result. From the relations, 6(r1r2) = rI6(r2) + 6(r1)r2 and

6(r1 + r2) = 6(r1) + 6(r2), it is clear that if R is generated over RO

by the set of elements X, then S2R (R) is generated by 6(X). We wish
O

to determine the relations imposed, so first we consider the case where the

set X is a free generating set.

Theorem 10.2 Let R = RO u 7l<X>, the ring generated over RO by the set

X subject to no relations; then S2R (R) is the free bimodule over R on
O
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the set X.

Proof: Let M be any R,R bimodule; then any derivation from R to M

vanishing on R0 is determined by the image of the elements X under the

derivation; moreover, the elements of X may be mapped anywhere by a

derivation. So, the functor DerR (R,M) is naturally equivalent to the
O

functor HomSets (X,M); one object that represents this functor is the free

bimodule over R on the set 6X, which has a derivation from R to it

extending the map X -+ 6X; by the uniqueness of an object representing a

functor, QR (R) must be isomorphic to this bimodule and the universal
O

derivation from R to this free bimodule is the one mentioned earlier.

Given an arbitrary R0-ring, R, generated over RO by a set

of elements X, there is a surjection RO 72<X> -+ R; so we should like

to describe how the universal bimodule of derivations changes under surjec-

tive homomorphisms between R0 -rings. This is quite simple to describe as we

shall see in the next theorem.

First of all, we introduce some notation, which simplifies the

equations of this chapter substantially. In many situations, we shall have

a specific homomorphism of rings R - S and also a particular R,R bi-

module M; we may form the S,S bimodule SORMORS, which we shall in

general write as V; if the rings R and S are constructed from other

rings in a manner which is reflected in the names of R and S, SORM&RS

will be quite unwieldy. For example, we shall prove later on the following

formula:

QR (R1 U R2) = QRO QR
0 RO 0

Since QR (Rl Ru R2) must be an R1 R R2, R1 R2 bimodule, whilst
O O O O

Q (RI.) is an Ri,Ri bimodule, it is clear that by the symbol 00 (Ri)

we mean (R l )0 (Q (R.))O (R uR ).
1 0 2 Ri RO 1 Ri 1R0 2)'

Theorem 10.3 Let R be an R
O
-ring, and I an ideal of R; then we have

an exact sequence: I/I2 + 0
R0

(R)0
P

02

RO
(R/I) - 0, where p is induced

by the ring homomorphism, and the map from I/12 to the bimodule 00R (R) 0
O

is induced by d.
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If R0 is a semisimple artinian ring, our sequence may be

extended to an exact sequence: O - I/I2 -> 0S2
RI

(R) Q $2

RO
(R/I) -> 0.

Proof: We have the exact sequence: 0 + S2
RO

(R) -> RO R a R + 0, which must
RO

be split exact as a sequence of left R modules; consequently, we have the

exact sequence:

O - R/I2
RO

(c
R0

(R)) -> R/I0
RO

R - R/I -> 0.

We look at part of the long exact sequence of TorR( ,R/I):

TorR(R/IO R,R/I) -+ Tor1(R/I,R/I) - a0R (R) 0 } R/IOR R/I -> R/I -> 0, where
O O O

all terms are R/I,R/I bimodules.

It is well-known (and we shall see this soon) that

Tor1(R/I,R/I) = I/I2. The map R/ISCR R/I -> R/I is the multiplication map,

so its kernel is isomorphic to 0Rpp(R/I) by 7.2, which gives us the exact

sequence: I/12 - R Q
R

(R) 0 + QR (R/I) -> 0; if RO is semisimple artinian,
O O

R/I&R R is projective, so that Tor1(R/I&R R,R/I) = 0, and we have the

exact sequence: 0 -), 1/1 2 + Q0
R

(R) 0 -> QR (R/I) -> 0 as stated.
O O

one we said; in order to show this, we describe the isomorphism between I/I2
R

and Tor1(R/I,R/I). Consider the map of exact sequences:

0 - I R - R/I --O

We need to show that the map from I/12 to 00R (R) 0 is the
O

0 --+R/IORQR (R) - R --R/I -0
0 O

Applying TorR( ,R/I) to it gives us a commutative diagram:

0 - TorR(R/I,R/I) i I0RR/I = 1/1
2

-> R/I

II rR(R/I,R/I) -- 0Q (R)o
1 RO

which shows that I/12 Tor1(R/I,R/I), whilst the right hand column

demonstrates that the map from 1/1
2

to 0SiR (R) a is what we want it to be.
O
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This result gives us a presentation of QR (R) in terms of

generators and relations whenever we have a presentation of R over R0.

If the set X generates R over R0, subject to the relations {fi} the

universal bimodule of derivations of R over R0 is generated as a bi-

module by the elements 6X subject to the relations 6fi = 0, where
6fi

is the formal differential of the element fi of the ring RO Z<X>.

We need a few results about the behaviour of the universal bi-

module of derivations under various universal constructions; we begin with

the coproduct construction.

Theorem 10.4 Let {Ri:i e I} be a family of R0-rings; then

(0QR(RiR ®Q_ O 0
P ID

Proof: This is most easily seen using our generator and relation construction

of the universal bimodule of derivations described after theorem 7.3. It is

clear that
S

(R Ri) is generated as a bimodule by the image of the bi-
R
O 0

modules QR (Ri) and there are no further relations, so the theorem must
O

hold.

We can also calculate the universal bimodule of derivations of

a tensor ring.

Theorem 10.5 Let M be an R,R bimodule; then J1 R(R<M>) = % 0, where the

derivation induces the identity map on M.

Proof: We look at the generator and relation construction of the universal

bimodule of derivations again. QR(R<M>) is generated by 6(M), and the

only relations are given by 6(rm) = r6(m), and 6(mr) = 6(m)r for r in

R, and m in M. So the result follows.

We also wish to study how the universal bimodule of derivations

behaves under the process of adjoining universal inverses.

Theorem 10.6 Let E be a collection of maps between f.g. projectives over

the R0-ring R; then QR (RE) _
0
Q
R

(R)®.

O O
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Proof: Given a bimodule M over a ring T, we can form the ring whose

additive structure is isomorphic to T $ M and whose multiplication is

given by (t,m)(t',m') = (tt', tm' + mt'), the trivial extension of T by

M; we write this ring as (T,M).

We wish to construct a derivation from RE to 0$2R (R)0 that
O

extends the universal derivation from R to OR (R). So, consider the ring

homomorphisms:

lR -=(R,OR0(R))

R
E

(RE,a0
RO

(R)

0

we wish to complete this to a commutative diagram of ring homomorphisms by

a map from RE to (RE,
a
Q
R

(R)0), because such a map must take the form

s +(s,ds) where d is a derivation extending the universal derivation

from R to S2R (R) by the commutativity. However, the set of maps E are
O

invertible over (RE, ®0R (R)since they are invertible modulo the nil-
0

potent ideal (O,QS2R (R)0); therefore there is a unique map from RE to

(RE,0QR (R)) completing the diagram.
O

We wish to show that this must be a universal derivation. Given

a derivation d':R -> M where M is an RE,RE bimodule such that d'

vanishes on R0, we know from the universal property of S2R (R) that d'

O
restricted to R factors through S2R (R), so we have a diagram:

O

where we have shown that the top triangle is commutative and we wish to show

that the bottom triangle must also be commutative to complete the proof. We

have two homomorphisms from RE to (RE,M) the first via s -> (s,d'(s)),

and the second via s - (s,da(s)). These agree on R, and since R - RE
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is an epimorphism they must be the same map.

Generators for the free skew field

For a free group on n generators it is well known and easy to

see that any generating set of n elements must be a free generating set,

and the corresponding result for a free k-algebra was shown by Cohn and

independently by Lewin (69). It is natural to ask whether the corresponding

result holds for free skew fields, which arise as the universal localisation

of the free k-algebra; J.Wilson asked whether the free skew field on n

generators could be isomorphic to the free skew field on m generators, and

a negative answer to this question would follow from the first result. We

should also like to know that if D is a skew subfield of E, then the skew

subfield of generated by D and X is isomorphic in the natural way

to DM, and if M is an E subbimodule of N, then the skew subfield

of E(N) generated by E and M is naturally isomorphic to

In the first of our problems we shall show that if n elements

tl,...tn generate k(x1.....xn as a skew field over k, the homomorphism

¢ on k<yl..... yn> given by (yi) = ti induces an isomorphism:

Qk(Mxl.....

It follows from our next theorem that ¢ must extend to an isomorphism of

the skew field k(y1....yn with as we wished to show.

Our next result gives us a way of recognising those epimorphisms

from a right hereditary k-algebra to a skew field that are universal localisa-

tions.

Theorem 10.7 Let E be a skew field, and let R be a right hereditary E-

ring. The ring homomorphism :R - F from R to a skew field F is a

universal localisation if and only if induces an isomorphism

0 QE(R) = QE(F).

Proof: If F is a universal localisation of R, the result is clear.

Conversely, if the map 5 is an isomorphism, 2R(F) = 0, and so is

at least an epimorphism. Therefore, by theorem 7.5, if E is the collection

of square matrices over R that become invertible over F, they form a

prime matrix ideal, and the induced map RE i F is surjective, where RE

is a local ring, and the kernel must be the radical.
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Since RE is a universal localisation of a right hereditary

ring, it is right hereditary by 4.2, and the kernel of R. + F, I, must

be a free module, so that I x 12 except when I = 0.

From 7.3, we have the exact sequence-

0 + i/12 + 0S2E(RE)0 + SZE(F) + 0; also we have the commutative diagram

E (RE)

where the top row and the first slanting arrow are isomorphisms which implies

that the second slanting arrow must also be an isomorphism, and I/12 = 0

follows from the exact sequence above. Hence, I = 0, and R. = F.

Next, we show that the skew subfield of E(X generated by D

and X where D is a skew subfield of E is isomorphic to the

proof is simply to apply the last result.

Theorem 10.8 Let D be a skew subfield of E; then the skew subfield of

E(X generated by D and X is isomorphic to

Proof: First, we calculate the universal bimodule of derivations of E(X

over E. E(X is the universal localisation of the fir so, by

10.6, ScE(E<X>) By the remarks after 10.3, S2E(E<X>) is

generated by the elements 6X subject to the relations e6x = 6xe for all

x in X, and e in E; that is, 12E(E(W is the free bimodule on the

E-centralising generators 6X. Let K be the skew subfield of E(X

generated by D and X, and consider the K,K bimodule generated by 6X

in This is the image of 0D(K) in induced by the ring

homcmorphism from K to This bimodule is just the free bimodule on

the D-centralising generators 6X. However, 0
D
(D<X>) is the free bimodule

on the D-centralising set 6X, and so, the natural map from D<X> to K

induces an isanorphism 2
D

(K) 2' QS2D(D<X>)0; since D<X> is a fir, 10.7

shows that K must be isomorphic in the natural way to

This result gives us a useful handle on our first problem about

the generators of free skew fields. Since we are looking at bimodules, it is
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likely that we shall have to think a little about the enveloping algebra of

a k-algebra, R, which is defined as R okR; our last result shows that

the enveloping algebra of a free skew field embeds in a skew field, and so,

the number of generators of a free bimodule over a free skew field is an

invariant. In fact, we shall consider a more general result than simply

generators for free skew fields, since the method of proof is no harder.

Theorem 10.9 Let E be a skew field with central subfield k. Let

tl.... tn be elements of E o k4xl....xn that generate it as a skew field
k

over E. Then, if the enveloping algebra of E o kjxl....xn over k is

weakly finite, the natural map from E u k<y ,,,,y > to E o kix ....x
k 1 n k 1 n

sending yi to ti extends to an isomorphism of E o k4yl....yn) with
k

E o
k
k'xl....xn

Proof: The universal bimodule of derivations of E k k<xl....xn> over E

is the free k-centralising bimodule on the generators dxi, so, by 10.6,

the same holds for the universal bimodule of derivations of E o
k

over E.

Since tl....tn generate E o kix .... x as a skew field over
k 1

n

E, dti generate 2 (E o So they are free generators because
k k

we assumed that the enveloping algebra of E o kixl....xn was weakly

finite. Hence, the map from E

k
U k<yl " 'yn>

to E o k4xl....xn given by
kyi - ti induces an isomorphism Q (E

V

k<yl....

yn>)
® -r c (E

k
So, by 10.7, the map sending yi to ti extends to an iso-

morphism from E o
k

kjyl....yn to E o kjxl....xnk

No example is known of a tensor product of skew fields that is

not weakly finite, so that it is yet possible that 10.9 may apply for all

skew fields. We shall prove only that the enveloping algebra of

E o kjxl....xn} is weakly finite when E is finite-dimensional over k.

k
We shall prove this by embedding E o kixl....xn} in for a

k
suitable set X and natural number m. It is useful to have a more general

result on embeddings of simple artinian rings.

Lemma 10.10 Let {E
i

for i = 1 to n} be f.d. division algebras over k,

such that l.c.m,{[E;k]} = m; then oE, o k4X> embeds in M (k<Z>) for a
i k 1 k m

suitable set Z.
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Proof: S. embeds in MH(k), so, by 9.11, o Ei embeds in o Mm (k) for
k k

n copies of M (k), which embeds in o M (k) for countably many copies
m k m

of M
m
(k), which we index by Z. We have an automorphism, o, of this

defined by sending the ith copy of Mm(k) to the (i + 1)st, so we form

the skew Laurent polynomial ring (o M(k))[x,x-1;a], which is a prime
k

m

principal ideal ring, and so, has a simple artinian ring of fractions.

However, we may construct this ring as a universal localisation of

m (k) u k[y]. Form the ring M (k) k -1
M k g m Y.Y ], which is clearly a universal

localisation of Mm(k)
k

k[y], and consider the subring generated by the

conjugates of M
m

(k) by the powers of y; there can be no relations between

the copies of MM(k), so this ring is just kMm(k) for countably many

copies of M
m
(k). We adjoin the universal inverses of all full maps between

f.g. projectives over kMm(k) inside Mm(k)
k
k[y,yand the ring we

find must be our skew Laurent polynomial ring above. The simple artinian

ring of fractions of this ring must be a universal localisation of

M (k)
k

k[y], so it can only be m(k) o k(y).m
k

So far, we have embedded o E, o kW in the simple artinian
k 1 k

ring M (k) o k(y) o which is just M (k) o kEXuy). This is a
m k k m k

universal localisation of M
m

(k)
k

k<X'> for X' = X u y. However, this is

just M (k<Z>) where Z is the set {z.. : i,j = 1 to m, x e X'} where
m 1Jx

the isomorphism sends x in X' to the matrix {z
1Jx

} whose ijth entry is

z.. . Therefore, M (k) o k(X' is isomorphic to M (MZ)).
1Jx m k m

We can prove the theorem we wanted now.

Theorem 10.11 Let E be a f.d. division algebra over k; then n elements

of the skew field E o k(xl....xn that generate it as a skew field over E
k

are free generators.

Proof: By the last lemma, E o kExl.... xn embeds in Mm(k(S ) for some
k

set Z. Consequently, its enveloping algebra over k embeds in

Mm2(kEZ'°akk(Z)). So we need to show that the enveloping algebra of k("

is weakly finite from which our lemma follows. However, we know that the

enveloping algebra of k4Z' embeds in a skew field, because it is a simple

ring (the centre of k(" is k, as we stated in 8.2), and we have a homo-

morphism to a skew field k(Z-°(Z'a where Z' is a set in bijective

correspondence with Z. So this is a weakly finite ring. Our theorem follows

from 10.9.
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There is another interesting result that we can prove using the

techniques of this section, which gives us an invariant of skew field co-

products of f.d. division algebras over k. We consider the universal bi-

module of derivations of such a skew field. After we have shown that the

enveloping algebra of a skew field coproduct of f.d. division algebras over

k is a weakly finite hereditary ring with a unique rank function, it follows

that the rank of the universal bimodule of derivations, which may be

considered as a f.g. projective module over the enveloping algebra, is an

invariant of the skew field. Since this number may be computed without any

difficulty from any coproduct representation, this is quite useful.

Theorem 10.12 Let {Di: i = 1 to n} be a finite collection of f.d. division

algebras over k; then the enveloping algebra of o D i is a weakly finite
k

hereditary ring with a unique rank function taking values in
1
Z for some

m
natural number m.

Proof: By 10.10, o D. embeds in M for some set Z; by the
k 1 m

argument of 10.11, its enveloping algebra must be weakly finite since it

embeds in the enveloping algebra of Mm(k4Z.).

The enveloping algebra of o D. is a universal localisation of
k 1

(o Di)° 0k (k Di), which is isomorphic to L o((o Di)o0kDi).
k (o D.) k

k

Each ring (o Di)°ID D. is simple artinian, because, the centre

of o D. is k or k(t) for some transcendental t by 8.3; so our
k 1

enveloping algebra is a weakly finite universal localisation of a ring with

a unique rank function. It must be a localisation at some set of maps full

with respect to the rank function, and so, it has a unique rank function

itself by the fact that all f.g. projectives are stably induced from the

ring of which it is a universal localisation by 5.10.

Once we have this theorem, we know that the universal bimodule

of derivations of o D. over k is a projective bimodule, since it is a
k

sub-bimodule of a free bimodule, because of the exact sequence:

0-Q k(o Di) o Di Q
k

o Di -* o Di - O.
k k k k

It is f.g. projective from the fact that S2k(o Di)
® aS1 k(D.k
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by 10.4 and 10.6. Its rank is an invariant since there is a unique rank

function.

m . -l
Theorem 10.13 The rank of S2 (o is z 1 where m = [D :k].

k k 1 i mi i i

Proof: We have the formula 0k (o Di)
®
2Qk(Di

k
From the exact sequence 0 -+ 2 k(Di) -+ Di0kDi + Di -. 0, we find

the exact sequence 0 -+ (o D.) oD c2 (D,)-* (o D.) D. -+ o D. -+ 0 by tensoring
k 1 k k

on the left by (o Di)QD1. As a sequence of o Di, D. bimodules, it is a
k

osplit exact sequence of f.g. projective bimodules since (o D.)OkD is

simple artinian. The middle module is free of rank 1, the right module has

rank 1/mi; so (o Di)@DS2k(Di) has rank 1 - 1/mi as a o Di, Di bi-

module. This implies that lthe rank of the bimodule QS2k(Di)®k must be

1 - 1/m1., and summing gives us the result we want.

We shall discuss in a later chapter the question of distinguish-

ing more fully between skew field coproducts with f.d. factors, as well as

providing examples of isomorphisms between certain of them that have the

appearance of being quite different.

As a last result, we are able to show that certain skew sub-

fields of E(N) have the form they should have by the methods of this

chapter.

Theorem 10.14 Let M C N be an extension of bimodules over the skew field

E; then the skew subfield of E(N generated by E and M is isomorphic

in the natural way to

Proof: E<M> and E<N> are both firs and their universal skew fields of

fractions are and By 10.5 and 10.6, 00E(E<M>) M

and a similar statement holds for QE(E(Nf); moreover, the universal

derivation takes the form of the identity map from M to M in this

representation.

Let K be the skew subfield of generated by M over E;

we wish to find S2E(K), and we have a homomorphism from it to the K,K sub-

bimodule of 2E(E(N)) generated by 6M, since M generates K over E.

However, this must be simply OM0; so the map &S2E(E<M>)0 -+ S2E(K) is an

isomorphism, and, by 10.8, K must be EM.
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11 COMMUTATIVE SUBFIELDS AND CENTRALISERS IN SKEW FIELD COPRODUCTS

In this chapter, we shall find out what we can about the

commutative subfields of skew field coproducts, and centralisers in the

matrix rings over the free skew field; in the first problem, the transcendence

degree of commutative subfields of the skew field coproduct is shown to be

essentially determined by that of the factor skew fields; in the second

problem we find that skew subfields of that have centres trans-

cendental over k are f.d. over their centre and in fact this dimension

must divide n2. In addition, we shall prove an odd result on skew sub-

fields of the free skew field; we shall see that every 2 generator skew sub-

field of the free skew field is either free on those 2 generators or else it

is commutative; there is an analogous result to this known for the free

algebra.

The basic result we need to prove our theorems is a characterisa-

tion of the transcendence degree of commutative subfields of matrix rings

over a given skew field due to Resco (80) which we shall not prove.

Theorem 11.1 The maximal transcendence degree of a commutative subfield of

M1(E) for varying n is the first integer m such that the global dimen-

sion of EOkk(x1...xm+l) is m, where {xi} is a set of independent

commuting variables. If there is no such integer, the maximal possible trans-

cendence degree is infinite.

At present, it is unknown whether there can be no commutative

subfield of transcendence degree m inside M
n
(E) when no such field lies

in E; however, there is a candidate for a counter-example. We consider

Mn(F) which is isomorphic to Mn(k) o k(xl...xm). It is unclear whether
k

k(xl...xm) can be embedded in F.

We shall apply 11.1 to the study of commutative subfields of

simple artinian coproducts; the author's original proof of the main theorem
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in this direction was missing a step, which was supplied by Dicks who pointed

out the next theorem.

Theorem 11.2 Let R be a weakly semihereditary k-algebra, and let S be

a simple artinian universal localisation of R; then the global dimension

of SOkA is bounded by the global dimension of RQkA for any k-algebra A.

Proof: If the global dimension of ROA is - or 0, the result is

trivial. So, we assume that the global dimension of ROkA is n >- 1. Let

M be some SMkA module, and let 0 '' Pn+l + Pn + .... + Pl + M + 0 be a

resolution of M as an RokA module, where each P. is projective.

Tensoring over R with S gives us the sequence

0 + Pn+l RS + P
n
0
R
S + .... + P1ORS -+ MORS + 0 which we shall show is an

R

exact sequence. For Tori(M,S) = 0 for i 2 2, since R is weakly semi-

hereditary, and so, of weak dimension 1; whilst Tor1(S,S) = 0 since S is

R
a universal localisation of R and so, Tor1(M,S) = 0, because M is an

S-module.

Me RS = M as SOkA module, and P.QRS A(SOkA) which is
k

a projective SOkA module. So, M has global dimension at most n, as we

wished to show.

This applies to the study of commutative subfields of simple

artinian coproducts in the following way.

Theorem 11.3 Let S be simple artinian, and let S1 and S2 be simple

artinian S-rings. Let k be a common central subfield. Suppose that the

global dimension of SokE = n, and the global dimension of S
i
0
k
E is ni

then n, a n. If n, = n for i = 1,2, then the global dimension of

(S1 o S2)akE is n or n+l. If ni > n for i = 1 or 2, then the global
S

dimension of (S1 o S2)QkE is the maximum of nl and n2.
k

Proof: Let A c B be a pair of rings such that B is left free and also

right free over A; then by 9.39 of Rotman (79), we know that the global

dimension of A is less than or equal to the global dimension of B

provided that A has finite global dimension. In particular, this applies

to SokE c S'akE, where S' is any S-ring. It also applies to show that
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the global dimension of (S1 o S2)QkE is at least the maximum of nl and
k

n2.

However, by the last theorem, the global dimension of

(S1 o SZ)0kE is bounded by the global dimension of
(S1 S S2 )a E.k

(S1 8 S2(a k E _ (S1a E)
U (S20kE); Sia E is free on either side over the

k
SokE

subring SOkE, so, by a theorem of Dicks (77), the global dimension of

(S1 S S2)OkE
is bounded by the maximum of n1 and n2 if one of these is

larger than n, and if nl = n = n2, then it is bounded by n+l. The

theorem follows.

If we take E to be k(x1...xm) for varying m, and apply

11.1 and 11.3, we deduce:

Theorem 11.4 Let n,n1 and n2 be the maximal transcendence degree over

k of commutative subfields of Mt(S), Mt(S1) and Mt(S2) for varying t,

where all rings are k-algebras, and S. is an S-ring. Then, if n1 or n2

is larger than n, the maximal transcendence degree of commutative sub-

fields of Mt(S1 o S2) over k for varying t is the maximum of nl and
k

n2; if n1 = n = n2 it may be n or n+l.

Proof: By 11.1, the maximal transcendence degree of commutative subfields

of Mt(S1 o S2) for varying t is equal to the maximal global dimension of
S

(S1 o S2)okk(x1...xm) for varying m. The theorem follows at once from
S

11.3.

Both possibilities may occur for n1 = n = n2. First, consider

S = k(x1...xm) and Si = S o k(yi); then
k

S1 o S2 = k(y1) o k(y2) o k(x1...xm). By 11.4, the transcendence degree of
k k

maximal commutative subfields of Mt(S1 o S2) is at most m in this case.

On the other hand, let S = k(xl...xm), and Si = S(ai) where ai = x1.

Then the centre of S1 o S2 contains S, and also the element al a2 + a2a1,
S

which is transcendental over S. So, here, the maximal transcendence degree

of commutative subfields is n+l.

We pass from considering the commutative subfields of skew field

coproducts to the study of centralisers. There have been a number of



181

interesting results on centralisers in skew fields and rings. The most

interesting of these is due to Bergman (67), who showed that the centraliser

of a non-central element in the free algebra over a field is a polynomial

ring in one variable. Another result of interest is due to Cohn (77') who

showed that the centraliser of a non-central element in the free skew field

is commutative; together with the earlier results of this chapter, we also

know that its transcendence degree over k is 1. We shall prove that it

must also be f.g. as a special case of results on centralisers in skew sub-

fields of M We shall show that centralisers of elements trans-
n

cendental over k in such skew fields are f.g. of p.i. degree dividing n

and having transcendence degree 1 over k. We have already seen that a

number of skew fields may be embedded in Mn(k(X)'). In particular, we showed

in 7.12 that all skew field coproducts of f.d. division algebras over k may

be so embedded.

Theorem 11.5 Let C be an arbitrary commutative field extension of k;

then COkMn(MXf) is an hereditary noetherian prime ring.

Proof: By 10.8, k(X is the skew subfield of c(X) generated by k and

X. Since kW has centre k, COkk(X is a simple ring and so, must embed

in which shows that it is a domain. It must be an Ore domain, because

C is commutative, and therefore, by representing C as a direct limit of

f.g. fields COkk<X. may be represented as a direct limit of noetherian

domains.

CokkW is a universal localisation of C<X>, and so, it must

be hereditary by 4.9. However, an hereditary Ore domain must be noetherian

by Robson (68). Therefore, CekMn(k(X)) = Mn(Cokk(X9) is an hereditary

noetherian prime ring as we wished to show.

This gives us another handle on commutative subfields of M (k4X}).
n

Theorem 11.6 Any commutative subfield of M
n

is f.g. of transcendence

degree at most 1 over k.

Proof: Let C be a commutative subfield of Mn(kW); by 11.5, CokMn(k(X)

is hereditary and noetherian. So, COkC must be noetherian, since

CokMn(kEX)) is faithfully flat over it (see Resco, Small, Wadsworth 79)).

Therefore, C must be f.g. That the transcendence degree is at most 1 follows
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from 11.4.

This already shows that centralisers in k(Xi of non-central

elements are f.g. and so, f.d. over the field generated by the element they

centralise. We extend this a little.

Theorem 11.7 Let E be a skew subfield of M whose centre contains
n

an element y transcendental over k; then [E:k(y)] is finite.

Proof: Let M be a maximal commutative subfield of E. M 2 k(y), and so,

is f.g. of transcendence degree 1 over k. Therefore, M is a f.d.

algebraic extension of k(y).

If C is the centre of E, [M:C] <_ [M:k(y)] and is finite;

therefore, if M' is the centraliser of M in E, [E:M'] = [M:C] is

finite. But M' = M, and so, [E:k(y)] = [E:M][M:k(y)] is finite too.

So, skew subfields of M
n
M(X)') whose centres are transcendental

over k are f.d. over their centre. It turns out that we can get a good bound

on the p.i. degree of such skew fields. The result we prove yields Cohn's

theorem that centralisers in the free skew field are commutative.

Theorem 11.8 Let E be a skew subfield of Mn(k(X.) of finite p.i. degree.

Then the p.i. degree divides n.

Proof: Let k be the algebraic closure of k; E embeds in Mn (k(X)), and

so, EOkk embeds in Mn(k(Xf).

If E has finite p.i. degree, E is f.d. over its centre, which

is f.g. over k by 12.6, and so, E6kk must be artinian.

If EMkk/rad(EQkk) = XSi, where each Si is simple artinian,
i

each S. is a central extension of E, and so, has the same p.i. degree.

Further, the transcendence degree of the centre of each S.
i

is at most 1,

so, by Tsen's theorem, S. is isomorphic to Mm(Ci) where m is the p.i.

degree of E, and C. is the centre of S.. Therefore,

Eokk/rad(EOkk) Mm(xC.), and since matrix units lift modulo a nilpotent
i

ideal, Ekk M
m

(A) for some artinian ring A. Therefore, we have a unit-

preserving embedding of M
m

(k) in M
n
(k(X)), where m is the p.i. degree

of E, which shows that m divides n.

We summarise the last few results in the following form.
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Theorem 11.9 Let E be a skew subfield of Mn(kfX3) whose centre is

transcendental over k; then E is f.d. over its centre which is f.g. of

transcendence degree 1 over k, and the p.i. degree of E divides n.

We come to the last theorem of this chapter which is on 2

generator skew subfields of the free skew field. At present, it is quite

unclear whether all skew subfields of the free skew field must themselves

be isomorphic to free skew fields on some number of generators; we have

already seen that commutative subfields must be f.g. of transcendence degree

1 but the methods are clearly too weak to show that they actually must be

rational. It therefore comes as a surprise that we are able to prove any-

thing at all about 2 generator skew subfields.

Theorem 11.10 Let F be a 2 generator skew subfield of k4X} over k;

then either F is commutative or else it is free on the 2 generators.

Proof: is a weakly finite hereditary ring such that all

projectives are stably free of unique rank, because it is a universal

localisation of F <X> which embeds in

We have an exact sequence of F, k(X3 bimodules:

0 + Qk(F)0 FOkk4X + kW i 0

where the left action of F on kW is given by the embedding of F in

Since F is generated by elements s and t, 2k(F) is generated

by elements 6s, St. By theorem 10.7, either F is freely generated as a

skew field by s and t or else there is a non-trivial relation between

ds and dt; in the latter case, 2k(F)0 is a non-zero 2 generator pro-

jective bimodule with some non-trivial relation between the 2 generators;

so it has rank 1 considered as a projective module, and k(X

considered as an F module via the left action of F on k4X3

described above is a simple module that is torsion with respect to the rank

function.

We have another torsion F0gkk4X module, Fok(s)k(X and this

maps onto our simple module via the multiplication map.

The category of torsion modules is an abelian finite length

category by 1.22; therefore, as a torsion module, has a unique

largest semi-simple quotient torsion module and the endomorphism ring of
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F'Ok(s)k(X) must act on this semisimple module. This semisimple torsion

module maps non-trivially onto our simple module it has a

unique largest direct summand of the form
n

and the endo-

morphism ring of FOk(s)k(X) must also act on this module. So, we have a

map from k(s) which lies in the endomorphism ring of F"k(s)k(X to the

endomorphism ring of )n which is Mn(C) where C is the

centraliser of F in kW; consequently, [C:k] = - because s must be

transcendental over k, and since centralisers of elements of k(X that

are not in k are commutative, F, which centralises C, must be

commutative.
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12 CHARACTERISING UNIVERSAL LOCALISATIONS AT A RANK FUNCTION

Simple artinian universal localisations

In chapter 10, we saw that if R is a right hereditary k-

algebra, we can characterise those epic skew fields over R that are

universal localisations by the property that the associated map on the

universal bimodule of derivations 0c (R) 0 0K(F) is an isomorphism. As

we shall see, this is equivalent to the property that Tor1(F,F) = 0, which

is a condition that we have already discussed in chapter 4; this is precisely

the property that we need to generalise to a characterisation of epic simple

artinian rings that are universal localisations. This condition fits nicely

into the theory of f.d. hereditary algebras and allows us to characterise

those epimorphisms from f.d. hereditary algebras to f.d. simple algebras

that arise as universal localisations.

In order to prove these results, we have to discover a lot of

information about the module structure of epic simple artinian rings that

are universal localisations at a rank function on a hereditary ring, R; we

are able to turn this information into results about epic R-subrings of

such simple artinian rings; they must all be universal localisations of R.

Such a result was already known in the Noetherian case where, however, it

was stated in terms of Silver localisation. One consequence of this result

on intermediate rings is that an epic endomorphism of the free algebra on

n generators over a field k must be an isomorphism.

It may well be true that if R is a right hereditary ring, and

the map R - R' is an epimorphism of rings such that Torl(R',R') = 0 then

R' is forced to be a universal localisation of R. The author has no way

of attacking this question, however, and the only results are those in this

chapter apart from the result that if i = I2 for an ideal I in a right

hereditary ring, R, then I is a trace ideal which shows that R/I is

a universal localisation of R as we saw in chapter 4. Such a result cannot

be true for all semihereditary rings as one sees by looking at a local Bezout
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domain, L, whose maximal ideal, M, is idempotent; Tori(L/M,L/M) = 0,

since M2 = M.

Lemma 12.1 Let 4:R - S be an epimorphism between K-rings, where K is a

semisimple artinian ring; then 0K(S) a
aQK(R)a,

if and only if

Tori(S,S) = 0.

Proof: By 7.1, 0 - 0K(R) - RQKR -> R - 0 is an exact sequence split as a

sequence of left R-modules, so the sequence 0 - SORS2K(R) -)- MR -r S -r 0

is also exact, and since K is semisimple artinian, SOKR is a projective

R-module. Therefore, we have an exact sequence:

O } Tor1(S,S) -)- Q0 (R) a -> SoKS -> S -> 0.
K

We extract the exact sequence:

O -> Tori(S,S) -> a S2 K(R) a - S2K(S) -* 0, from which our lemma follows.

Before setting about the main proofs, we isolate a useful lemma.

Lemma 12.2 Let R be a ring of weak dimension 1 (in particular, a right

hereditary ring), let M and N be a right and left module over R,

respectively
R

, with submodules M' and N'; then if Tor(M,N) = 0,

Tori(M',N') = 0.

Proof: Apply the long exact sequence of TorR( N) to the sequence

O -> M' -> M - M/M' -* 0, which shows that Tori(M',N) = 0, and then apply

the long exact sequence of TorR W, ) to the sequence 0 -r N' -r N -. N/N' -+ 0

to complete the proof.

We can begin on the first result.

Theorem 12.3 Let R be a right hereditary ring and let :R + S be an

epimorphism from R to a simple artinian ring S; then S is a universal

localisation of R if and only if Tori(S,S) = 0.

Proof: Universal localisations of a ring R at some set of maps E between

f.g. projectives always satisfy the condition Tori(RE,RE) = 0 by Bergman

and Dicks (78) and 4.7. The strategy for proving the converse is to find

the structure of S as a right and left R module.

First of all, we can divide out by the trace ideal, T,, of all
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f.g. projectives of rank 0 with respect to p, the rank function induced

on R by the map to S; this is a universal localisation of R at suitable

maps all of which become invertible over S. By 4.9, a universal localisation

of a right hereditary ring is right hereditary, so R/T is right hereditary;

by 1.7 and 1.8, all f.g. projectives over R/T are induced from R, and

the rank function p on R induces a faithful rank function on R/T. Since

T lies in the kernel of R -).S and Tori(S,S) = 0, Tori/T(S,S) = 0 too.

Therefore, if we may prove our theorem on the assumption that p is a

faithful rank function, it follows in general.

Let M be a right R submodule of S; then, we see from 12.2

that Tori(M,S) = 0. Let 0 - P a Q i M - 0 be a presentation of M, where

Q is f.g. projective, and P must be projective, and therefore, a direct

sum of f.g. projectives by 1.2. Then, since Tori(M,S) = 0, the sequence

below is exact:

a0S
0 -> PORS -+ QQ_RS -+ MGRS -+ 0

Since p is a faithful rank function, and MGRS x 0, P must be finitely

generated, and p(P) < p(Q). Also, a must be a left full map, for, if it

were not, agRS factors through a module of smaller rank, and cannot be

injective.

We define the presentation rank of a f.p. module by

p. p (M) = p (Q) - p (P) , where 0 -+ P -+ Q -* M - 0 is a presentation of M;

it is well-defined by Schanuel's lemma. Our aim is to show that S as a

right module is a directed union of f.p. modules of left full presentation

of presentation rank 1, having no submodules of presentation rank O. There

is an analogous result on the left.

In order to carry this out, we need to see how left full maps

with respect to p behave under QRS. We wish to show that they become

injective; this is a little harder to show immediately than that right full

maps become surjective, which is our next step.

Let a:P -+ Q be a right full map between f.g. right projectives

over R; then all f.g. submodules of Q containing the image of P have

rank at least that of Q, and so, by our first step, cannot occur as the

kernel of a map from Q to S. Since our first step showed that all such

kernels are finitely generated, we deduce that Hom(cokera,S) = 0; since

all modules over S are projective, this shows that cokeragRS = 0, and
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09 RS must be surjective.

Since all right full maps between f.g. right projectives become

split surjective over S, all left full maps between left f.g. projectives

become split injective over S by duality. If we had assumed two-sided

hereditary, we would know that left full maps between f.g. right projectives

become split injective, and we would proceed as we do in the latter half of

the proof; as it is, we are able to deduce these properties in the right

hereditary case with a little more work.

So, let M be a f.g. left R submodule of S, then by 12.2,

Tori(S,M) = O. Let 0 - F -s Q + M - 0 be a presentation of M, where Q

is f.g. projective, and, since R is left semihereditary by 1.8, all f.g.

submodules of F are projective. Our intention is to show that F is a

directed union of f.g. projectives where all inclusions in the system are

left full, and the rank of each module in the system is less than that of

Q.

Let {Pli:i E I1} be the set of f.g. submodules of F of mini-

mal possible rank q1; if there are f.g. submodules of F that do not lie

in such a Pli, we consider the set of f.g. submodules {P2i:i E I2} where

P2i P1j for any i,j and the rank of each P2i is q2, the minimal

possible. In general, at the nth stage, either all f.g. submodules are

inside some Pki for k < n, or else, we form the set of f.g. submodules

{Pni : i e In} such that Pni 4
pkj

for k < n, and the rank of Pni is

qn, the minimal possible. We see that in the limit, every f.g. submodule of

F must lie in some Pni, since the ranks qn form an ascending sequence

of numbers in 1 mi, and so, are eventually bigger than the rank of any f.g.
m

module. So F is the directed union of these modules; moreover, if

Pkl C Pi,, the inclusion is a left full map, since there are no intermediate

modules of smaller rank.

Consequently, SMRF is the directed union of the system of f.g.

modules {SORPki:k a M, i e I
k

} and all the maps in this system are

injective, because we have shown that left full maps between f.g. left

projectives become injective. As noted above, Torl(S,M) = 0, so the

sequence below is exact:

0 -> SORF -+ SORQ - SORM - 0 .

Therefore, SORF must be finitely generated and of rank less than that of

Q, since SORM does not equal 0. Consequently, the rank of each Pki must
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be less than the rank of Q, since S%Pki embeds in SORF, our directed

system must have stopped at some finite stage, and it represents F as a

directed system of f.g. submodules where all maps are left full, and the

modules all have rank less than that of Q, as we wished.

Let a:P + Q be a right full map between left f.g. projectives;

then all f.g. submodules containing the image of a have rank at least that

of Q, so that the image of a cannot lie in the kernel of a map from Q

to S. Therefore, HomR(cokera,S) = 0, and SORcokera = 0. Right full

maps between left f.g. projectives become split surjective, and so, by

duality, left full maps between left f.g. projectives become split injective,

as we wished to show originally.

Let M c N be a pair of f.p. right modules of left full

presentation such that the presentation rank of any module M1 between M

and N is at least p.p(M); then we show next that MRS + NORS is an

embedding. For consider the commutative diagram with exact rows:

O -> P a Q1 +M+0
IIpj nl

O+P -; Q2 ->N -r 0,

obtained by pullback from a presentation of N, where a,s are left full

maps. Then, any Q such that Q1 E Q E Q2 satisfies p(Q) a p(Q1) since

the presentation rank of the image of Q in N is at least that of M by

assumption. So, Q1 -> Q2 is left full. Tensoring our diagram with S gives

us a commutative diagram with exact rows: 0 + PIDRS + Q10RS + MGRS -0
11

nl 1
O + PORS + Q

2
0
R
S + NORS + 0,

since a and B are left full. It follows that the map MGRS + NORS must

be an embedding. we use this to examine the structure of S as right R

module in a similar way to our method of studying a left submodule of a free

left module earlier on.

First of all, we note that every right R submodule of S

containing R has presentation rank at least 1; for on tensoring R c M c S

with S, we obtain S = ROBS + MRS + SORS = S, where the composite map is

the identity, so that the rank of MoS is at least 1; but we have seen that
R

Tor1(M,S) = 0, so that p.p(M) = pS(M@RS) >_ 1.

We consider the set of all f.g. right R submodules Mli of S

such that Mli contains R, and p.p(Mli) is minimal, which implies that
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it is 1. Our intention is to show that S is the directed union of these

modules. If it is not, let {M2i:i E 12} be the sets of f.g. submodules of

S that contain R, do not lie in any Mli and have minimal presentation

rank, q2, subject to these conditions. In general, our nth step is to take

the set of f.g. submodules of S that contain R, do not lie in Mki for

k < n, and have minimal rank subject to these conditions. Every f.g. sub-

module of S must lie in some Mki since we have seen that all f.g. sub-

modules have a presentation rank; consequently, S is the directed union

Mli, there can beof the directed system of submodules {Mki }. If Mkj
S

no f.g. submodule of Mli such that its presentation rank is less than

that of Mkj; so, we have shown above that the map obtained by tensoring

with s, Mkj0RS -> Mli0RS must be an embedding. This shows that S which

as S module is isomorphic to SORS is the directed union of the sub-

modules Mki®RS; in particular, each of the ranks PS(Mki'RS) = 1. Since

this is just the presentation rank of Mki (Tori(Mki,S) = 0), our process

must have stopped at the first step; that is, S is the directed union of

the f.g. right R submodules {Mli}.

From here, it is not too hard to see that S must he a universal

localisation of R. We know that all full maps between f.g. right projectives

become invertible, since they are both left and right full. So we have a map

from the universal localisation of R at the rank function, Rp, to S,

which we shall show is surjective.

Let s E S, and let M be a right R submodule of presenta-

tion rank 1 of S containing both R and s; we consider the commutative

diagram with exact rows:

O -+P ->P $R-+R-r0

0--P -). Q + M-.). O

obtained by pullback along R c M from a presentation of M. We know that

P 0 R and Q have the same rank, and since all f.g. modules between R

and M have presentation rank at least 1, the middle column is a full map.

So, over R
P

it is invertible, and its inverse induces a map from M to

P
whose composite with the homomorphism from RP to S induces the

embedding of M in S we began with. So the map from R
P

to S is sur-

jective.

We know that R
P

is a perfect ring by 5.3, so the surjective
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maps from R
P

to simple artinian rings arise as R
P
+ R

P
IN + eR

P
IN, where

N is the nil radical, and e is a central idempotent in the semisimple

artinian ring R IN. If e is an idempotent of R whose image in R IN
P P P

is e, it is clear that eR IN = eR e is the universal localisation of
P P

R
P

at the map e, so S is a universal localisation as we wished to show,

because all f.g. projectives over RP are stably induced from R by 5.3,

and so, the iterated universal localisation theorem, 4.6, applies.

Of course, after the event, we know that S is the universal

localisation of R at the rank function, so that R is a rather better
P

ring than we knew during the proof.

It is possible to give a description of the right R module

structure of S in the situation of theorem 12.3 essentially by abstracting

the relevant information from the proof. First, we assume the rank function

is faithful by passing to the quotient by the trace ideal of the f.g. pro-

jectives of rank 0 if necessary. Next, we see that S is the directed

union of the f.g. submodule of S that contain R and have presentation

rank 1. If M is such a submodule, all modules between R and M have

presentation rank at least 1. Conversely, if a:R + M is an embedding of

R in a f.g. module of left full presentation having presentation rank 1,

and all f.g. modules between R and M have presentation rank at least 1,

we form the commutative diagram with exact rows obtained by pullback from a

presentation of M; 0 P P® R+ R 0

1 1
ni

O + P + Q + M0
It is clear that the embedding of P ® R in Q is full, and so, it is

invertible over S, which leads to a homomorphism from M to S extending

the map from R to S. The kernel of this map is the unique maximal sub-

module of M of presentation rank O. So we wish to see how all the maps

a:R + M from R to f.g. submodules of presentation rank 1, such that all

submodules have presentation rank not 0, and those that contain R have

presentation rank at least 1, having left full presentations, fit together

to form S. If we have two such maps ai:R + Mi. the pushout map gives us

a map a:R + M to a module of the right form apart from the problem that

it may have a submodule of presentation rank 0, so we pass from M to the

quotient by the unique maximal such submodule of M, M; this gives us a

commutative diagram: R + M
1l

M2-* M
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so that we may form the directed system of all such maps. The direct limit

is S.

We may combine the last theorem with 12.1.

Theorem 12.4 Let R be a right hereditary K-ring, where K is semisimple

artinian; let R -> S be a map from R to a simple artinian ring S; then

S is the universal localisation of R at the rank function induced by the

map if and only if cK(S) = a9K(R)a.

Proof: We simply combine the equivalences given by 12.1 and 12.3.

In chapter 1, we defined the transpose of a f.g. module of homo-

logical dimension 1 such that the dual of the module is trivial by

TrM = Ext1(M,R). This defines a duality between the categories of such

modules on the left and on the right as we showed in 1.19. A pre-projective

module, M, is an indecomposable module such that (DTr)nM is projective

for some non-negative integer n; a pre-injective module, M, is an

indecomposable module such that (TrD)nM is injective for some n. It is

clear that these are dual notions with respect to the duality D. Ringel

also defines a module M over a f.d. hereditary algebra to be a brick if

EndR(M) is a f.d. division algebra and Ext1(M,M) = 0; pre-projective and

pre-injective modules are examples of bricks.

Theorem 12.5 Let R be a f.d. hereditary k-algebra and let M be a f.g.

indecomposable module over R with endomorphism ring D a f.d. division

algebra such that [M:D] = m; then the associated map from R to M
m

(D)

is a universal localisation at the rank function it induces on R if and

only if M is a brick; in particular, for all pre-projectives or pre-

injectives, the associated homomorphism from R to a f.d. simple artinian

ring is always an epimorphism.

Proof: All M (K) modules considered as R modules are direct sums of

copies of M; for M, ExtI(M,M) = 0 = ExtM1(k)(M,M) and so,
m

ExtM1(k) = EXt1 for all Mm(k) modules; by theorem 4.8,
n

TorR(M (k),M (k)) = 0, and so by theorem 8.3, m (k) is a universal
1 m m m
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localisation of R.

We shall use the last result in the next chapter to construct

some interesting isomorphisms between simple artinian coproducts, but, for

the present, we shall investigate the subring structure of simple artinian

universal localisations of right hereditary rings more closely.

Epic subrings of simple artinian universal localisations of hereditary rings

In this section, we shall show that all epic subrings must

themselves be universal localisations. The principal application of this

result is to show that all epic endomorphisms of the free k-algebra on n

generators must be isomorphisms; this was shown for n = 2 by Dicks and

Lewd; (82) .

Theorem 12.6 Let R be a right hereditary ring with a rank function p

such that R
P

is a simple artinian ring; let T be an epic R subring of

R
P

; then T is the universal localisation of R at those maps between f.g.

projectives over R that become invertible over T.

Proof: The method of proof is entirely similar to that of 12.3 except for

the need in one or two places for closer attention. We may assume as we do

in 12.3, that p is a faithful rank function.

We have already seen in the course of 12.3 that all f.g. sub-

modules of R
P

are f.p. of left full presentation and if M is such a

module, TorI(M,R
P

) = 0. Further, R
P

is the directed union of f.g. R

submodules of presentation rank 1; we shall show that T is also a directed

union of f.g. R submodules of presentation rank 1, from which it will

follow in a similar way to the proof of 12.3, that T is a universal

localisation of R.

Let R c M c T, where M has presentation rank 1; then, we

find that the inclusion M c R
P

becomes an isomorphism MO
R
R

p
} R

p
®

R
R

p
= R,

under tensoring with Rp over R; for MORRp is isomorphic to RP since

M has presentation rank 1, and Tor1(M,R ) = 0, and the image of MO R
1 P R R P

in RP is MRp = RP, since P. c M. Consequently, Torl(Rp/M,RP) = 0, as

we see by considering the long exact sequence of Tort( R
P

) associated to

the short exact sequence: 0 -)- M -> R -*R /M -} 0; we find the exactp
P

sequence, 0 = Tor I (R
P
R

p
) -r Tor I (R

P
/M,R

P R
) - M Rp -+ RpRORp, which'

demonstrates that Tor1(RP/M,RP) = 0. By lemma 12.2, we see that
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Tor(T/M,T) = 0, which allows us to show that MORT -r TORT + T is an iso-

morphism; certainly, MORT -> TART a T is an injective map because

Torl(T/M,T) = 0, and T is an epic R ring; the image is just MT which

contains RT = T, since R c M.

We consider the set of f.g. R submodules of T {Mli i E 11}

such that R c Mli and the presentation rank of each Mli is 1; we wish

to show that T is the directed union of these modules.

If it is not, let {M2i : i e 12} be those f.g. R submodules

of T that contain R, do not lie in any Mli, and have minimal presenta-

tion rank, q2, subject to these conditions; we saw in the course of the

proof of 12.3, that q2 is larger than 1. In general, at the nth stage,

we consider the set of f.g. R submodules of T {Mni : i e In} that

contain R, do not lie in any Mki for k < n, and have minimal presenta-

tion rank qn, subject to these conditions. It is clear that T is the

directed union of the complete set of Mki over all k. We know that if

Mk
j

c_ Mk i, then kl < k2 and any module between the two of them has
1 2

rank at least equal to qk ; consequently, as we saw in the course of the
1

proof of 12.3,
Mk jfARRp i Mk i0RRP

must be an embedding of a module of
1 2

rank qk in one of rank qk . Therefore, TORR TORTOTR = TOTR = R
1 2 P P P P

(since T is an epic R ring) must be the directed union of the system of

modules Mki0RRP. and so, each such RP module has rank at most 1, which

implies as we wanted, that T must be the directed union of the submodules

Mli that contain R and have presentation rank 1.

By the same method as we employed in the proof of 12.3, we

deduce that if E is the collection of maps between f.g. projectives over

R that become invertible over T, the map from RE is surjective. All

these maps in E must be full with respect to p, since they are invertible

over RP, so we may apply the result proved in 5.8, that the image of an

intermediate localisation in the complete localisation at all full maps is

still a universal localisation; in particular, T is a universal localisa-

tion.

Together with the theorems at the end of chapter 5, we see that

the epic R-subrings of the simple artinian universal localisation of a

hereditary ring R are precisely the universal localisations of R at a

factor closed set of full maps between f.g. projectives.
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It is not a great deal of effort to prove from this theorem that

all epic endomorphisms of the free algebra on n generators must be iso-

morphisms.

Theorem 12.7 Let :k<x1....xn> ; k<xl....xn> be an epic endomorphism,

then it is an isomorphism.

Proof: The elements 4(xi) generate the free skew field k(x1....xn

consequently, by 10.11, they must be free generators; therefore

k<xl....xn is an epic k<@(xl)...4(xn)> subring of its universal skew

field of fractions, and, by 12.6, it must be a universal localisation of

k<Cx)...O(xn)> at some set of maps. In order to show that it can only be

the trivial localisation, we consider the induced map on the functor K1,

K1($).

Since K1(k<x1.... xn>) = k*, by Gersten (74), K1(¢) must be

the identity map on k ; on the other hand, we have an exact sequence of

K-groups associated to the universal localisation by 4.11:

K1(R) + KI(RE) -r KO(T) -> K0(R) -> K0(RE) ,

where R and RE are isomorphic to k<x1....xn> and T is the full sub-

category of modules of the form cokera where a is in E; KO(R) -> K0(Rp)

is injective, and K1(4) is an isomorphism so that KO(T) must be zero;

but this implies that E must be trivial as required because it implies

that k<xl....xn> is equal to k<o(x1).... Oxn)>. So 0 is an isomorphism.
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13 BIMODULE AMALGAM RINGS AND ARTIN'S PROBLEM

One of the purposes of this chapter is to construct a new class

of skew fields generalising the skew field coproduct with amalgamation. They

are interesting to us for several reasons. Many arise naturally as skew sub-

fields of skew field coproducts; also, the methods that apply naturally to

them apply just as well to the skew field coproduct giving us results that

would not have been clear without this greater generality; further, we may

use the new construction in order to show a number of interesting isomorphisms

between apparently different skew field coproducts, and to study the simple

artinian coproducts of the form M (k) o M (k). However, the major interest
m k n

in the construction is the solution it leads to for Artin's problem. Artin

asked whether there are skew field extensions, E D F, such that the left

and right dimension of E over F, respectively [E:F] [E:F]
r
< - but

[E:F]1 x [E:F]r. We shall see that for arbitrary pairs of integers greater

than 1 occur as the left and right dimension of a skew field extension. In

recent work of Dowbor, Ringel and Simson (79), it was shown that the heredi-

tary artinian rings that have only finitely many indecomposable modules

correspond to Coxeter diagrams in the same way that hereditary artinian

algebras (f.d. over a central subfield) correspond to Dynkin diagrams; they

were unable to show however that any Coxeter diagram that is not a Dynkin

diagram actually had a corresponding hereditary artinian ring, since the

existence of such a hereditary artinian ring required the existence of an

extension of skew fields having different but finite left and right dimension

together with further conditions; at the end of the chapter, there is an

example of an hereditary artinian ring of finite representation type

corresponding to the Coxeter diagram I2(5).

Bimodule amalgam rings

Given a couple of skew fields E1 and E2, we define a pointed

cyclic E1, E2 bimodule to be a pair (M,x) where M is a E1, E2 bimodule,
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x is in M, and M = E1xE2. For example, if F is a common skew subfield

of E1 and E2, the pair (ElQFE2,1®1) is a pointed cyclic bimodule on

an F-centralising generator.

The importance of this idea for us lies in the observation that

the ring coproduct E1

F
E2 is the universal ring containing a copy of E1

and E2 such that the pointed cyclic bimodule (E1,E2,1) is a quotient of

(E10FE2,101).

If (M,x) is a pointed cyclic E1, E2 bimodule and the rela-

tions for the generator x are jeijxeij = 0; eij a E1, eij a E2, then

the universal ring containing a copy of E1 and E2 such that (EIE2,1)

is a quotient of (M,x) is clearly the ring

E1 (Mu

x)
E2 = <E1,E2 0 if Eei xei. = O>

J J J j ij J

The first question to arise is whether this ring is not the

trivial ring. We shall show that inside this ring (E1E2,1) is isomorphic

to (M,x) and so, it can only be trivial if M is. Further, we shall show

that E1
(M x)

E2 is a fir. Therefore, it has a universal skew field of

fractions, which we shall denote by E1 (M,x) E2.
It is fairly clear that the isomorphism class of the ring

E1 (M x) E2
depends in general on the generator x that we choose;

surprisingly, this is not true for the universal skew field of fractions;

E1 (M,x) E2 is actually independent up to isomorphism of the generator x,

so that it makes sense to talk of the skew field E1 o E2 where M is a
M

cyclic bimodule, though in this notation there are no specific embeddings

of E1 and E2 in E1 o E2, whilst there are specified embeddings of E
M

and E2 into E1
(M,x)

E2. This result allows us to prove a number of

interesting isomorphism theorems.

The method that we develop applies just as well to simple artinian

rings S1 and S2 in place of E1 and E2, so our policy will be to work

in this generality whilst pointing out what occurs in the skew field case.

Let S1 and S2 be a couple of simple artinian rings, and let

(M,x) be a pointed cyclic S12 S2 bimodule. A good way to study such a

situation is to consider the upper triangular matrix ring R = S1 M

O S2

This ring is a particularly pleasant sort of hereditary ring, so, if we can

pull the ring S1 (M,x) S2 out of it in some way, we shall be able to show
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that it too has good properties.

Theorem 13.1 Let M be a pointed S1, S2 cyclic bimodule, where S. are

both simple artinian rings; let R = S1 M and let a: S1 O O M

O S2 O o o S 2

be right multiplication by O x\. Then the universal localisation of R

at a is isomorphic to M2(S
,1 (Mx)

S2). If R' _ /Sl M ® N\ where N

\0 S2
is some S1, S2 bimodule, then the universal localisation of R' at a

is M2(T), where T is the tensor ring over S1 (M,x)
S2 on the bimodule

(Si
(M;x)

S2)as1NOS2(S1
(M;x)

S2). Both of these ring constructions are

hereditary.

Proof: In the ring Ra, the elements (1 0) and (p 0) and those

representing a and its inverse form a` set of 2 by 2 /matrix units; there-

fore R = M2(R), where R is
O O

R
a O O .

R is -generated by S1

aS2a

and

-1

a

, and the only relations arise because (S1aS2a1,1) as pointed S1,

aS2a bimodule arises as a quotient of (S1xS2'x) (once we identify S2

and aS2a-1 suitably); therefore R is isomorphic to S1 (Mx) S2. Of

course, we do not know that \R is not the trivial ring.

IIf R. = (,]. M®N I then Ra - M2(R') where R' = (
O) Ra(O O);2/I

R' is generated by S1, aS2a1, and Na -l, where the only relations that

occur state that S1 and aS2a-1 generate a-copy of S1
(t "'x)

S2 and that

Na is isomorphic as left S1, right aS2a bimodule to N as S1, S2

bimodule (again we identify S2 and S2a-1). This is clearly just the

tensor ring over S1 KU S2 on the bimodule

(S1
(M, x) S2)0 S1N&S2(S1 Mx)

S2).

Since M2(Sl (M,Ix) S2) arises as a universal localisation of the

hereditary ring R, it must itself be hereditary by 4.9. So S1 S2

is hereditary, and similarly, our tensor ring is hereditary.

O 0

When considering an upper triangular matrix ring of the form
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(S1
M/o S

where S1 and S2 are simple artinian rings, we shall call the

projective rank function defined by setting P(01 O) p(O S2)
the

standard u.t. rank function; we have singled this rank function out solely

because we shall use it most often, not because it has any special signifi-

cance. If the map a given by right multiplication by (0
O)

from (Si 0)

/, then Ra willto
(0 S

1 is a full map with respect to this rank function
2

inherit many of the good properties of R as we shall now show. In most

applications, it will be clear that this map is full; for example, this is

true if S1 or S2 is a skew field.

Theorem 13.2 Let (M,x) be a pointed cyclic Sl, S2 bimodule, and let

N be some other S1, S2 bimodule. Let R = (S1 S®N), and let p be the
2

standard u.t. rank function. Then, if right multiplication by (0

0)

defines

a full map from (S1 0) to (0 MON), the tensor ring, T, on the bimodule

(S1 (M,x) S2)0S1NOs (S1 (t4,r) S2) over the ring S1 (M,x)
S2 is an heredi-

tary ring with a unique projective rank function whose image is generated by

the images of the projective rank functions on the subrings S1 and S2.

In particular, this applies when N is 0; we find that the ring

Sl (M x) S2 has these properties.

Proof: We know that M2(T) is the universal localisation of R at the map

given by right multiplication by (0
O)

from (01 0) to
(0

52N), which

we are assuming is full. KO(R) _ Z ® Z, and there is a non-trivial kernel

in the map from KO(R) to KO(M2(T)), so that there is at most one partial

rank function defined on the image of K0(R) in K0(M2(T)) so that any

projective rank function on M2(T) must agree with p on K0(R); by the

remarks after 5.2, the rank function must be unique, if it exists and there

is an extension since a is a full map.

In the case described by the conditions of 13.2, we deduce that

the universal localisation of the ring S1
(M,x)

S2 must be simple artinian

by 5.5. We denote this by S1 (Mop) S2, the universal simple artinian amalgam

of S1 and S2 along the pointed cyclic bimodule (M,x). Also, we see that

(S1S2,1) is isomorphic to (M,x) as pointed bimodule; for (O1

S

) embeds
2

in the universal localisation at the rank function, so it certainly embeds
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in (OS 1 S )a, but we have an isomorphism (S1aS2a-1,1) = (S1xS2,x) (M,x),
2

which is what we wanted. We can improve our result in the case where S1

and S2 are skew fields.

Theorem 13.3 Let E1 and E2 be skew fields, and let (M,x) be a pointed

cyclic El, E2 bimodule; then El E2 is a fir. The pointed cyclic

bimodule (E1E2'1) is isomorphic to (M,x).

Proof: The map a given by right multiplication by (0
O) from (01 0)

to
(00

E
I is full with respect to the standard u.t. rank function on

2

R = (O1
E

I and it is factor complete by 5.14; so all f.g. projectives over
\ 2

M2(E1 E2) = R are induced from R. Since 101 0) and (0
E2)

become isomorphic over the universal localisation

`at

a, it follows that

E1 (M,x) E2 must be a fir.

Isomorphism theorems

Theorem 13.4 Let S1 and S2 be simple artinian rings, and let M be a

cyclic S1, S2 bimodule./Assume that x \and y are both generators of M

as a bimodule such that 10 0) and (0 0) both define full maps from

(O1 0) to
(0 S2)

on the ring (O1 S2) with respect to the standard u.t.

rank function. Then S1 (M01 (Mx)
S2 is isomorphic to S

,1 (Mx) S2.

Proof: The universal localisation of os1 S at the given rank function is

both the universal localisation of M2(S1 (Mux) S2) at the unique rank

function and the universal localisation of M2(S1 (MU 52) at its rank

function; so, M2(S1
(M,x)

S2) M2(S1 (M,y) S2); since both sides of the

isomorphism are simple artinian rings, we can deduce that

S1 (M,x) S2 = S1 (M,y) S2.

For skew fields, we can eliminate a hypothesis from this theorem.

Theorem 13.5 Let E1 and E2 be skew fields; let M be a cyclic E1, E2

bimodule; then
E1 (MOx) E2 = E1 (Moy) E2

for any bimodule generators x
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and y of M.

If y = Ee.xe', it is possible to calculate that a specific map

ofrom E that extends to an isomorphism ofE1 (M,y) E2 to E1 (Mx)
2

El (M,y) E2 with E1
(M,x)

E2 is given by E2 -> E2 by the identity map,

and E1 is mapped to E1Eeiei.

We see from the last theorem that if F1 and F2 are common

skew subfields of El and E2 such that ElIF E2 - E111F E2 as El. E2
1 2

bimodules, then E1 Fo E2 El Fp E2. Our next result simply states some
1 2

interesting special cases of this result.

Theorem 13.6 Let S1 be a f.d. simple artinian k-algebra, and let S2 be

a simple artinian k-algebra such that S1®kS2 is simple artinian. If T1

and T2 are common f.d. simple artinian k-algebras such that [T1:k] = [T2:k],

then Sl
T

S2 Sl

T

S2.

1 2

Proof: Sl0T S2 = Sl0T S2, since the ring S00kS2 is simple artinian, and
1 2

both bimodules are free S2 modules of the same rank. So

R = Sl SlOT1S2 S1 Si T2S2

O S2 O S2

O T 1

Right multiplication by the element 1 defines a full map with

O
\

respect to the standard u.t. rank function from R(
0)

to R(0 1), since

the localisation of R is isomorphic to M2(Sl

T

S2) by 13.2, which has
1

a homanorphism to a simple artinian ring inducing our rank function on R.

O A 1
Similarly, the element T2 defines a full map; therefore, by 13.4,

O O

Sl
T1 S 2

= S1 T2 S2.

Our last result gives us a number of isomorphic simple artinian

coproducts with the same factors but different amalgamated simple artinian

subrings; our next result uses this to provide examples of isomorphic simple

artinian coproducts that have different factors and the amalgamation takes
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place over the same central subfield.

Theorem 13.7 Let S be a f.d. simple artinian k-algebra, and let S1 and

S2 be simple artinian subalgebras of S such that [S1:k] _ [S2:k]; then

S
k

Sl = S o
k

S2.

Proof: S o S = S o (S o S S o (S o S ) by 13.6, since the centre
k 1 S

2
2 k 1 S 1 2 k 1

of S1 U S 2 is k or else purely transcendental over of degree 1, as we
k

saw in chapter 10, so that S°Qk(S1 o S2) is simple artinian. However,
k

S o (S2 o S1) S
k

S2.
1 k

We can prove a stronger theorem than 13.7 in the case where S

is a central simple artinian k-algebra, that is, when the centre of S is

exactly k.

Theorem 13.8 Let S be a central simple k-algebra such that [S:k] = n2

let S1 be a simple artinian k-subalgebra such that [SI:k] = m. Then

S o S1 = where IXI = n2
mml

k

Proof: M2 (S o S1) is the universal localisation of S SekSl at the
k

O S1

standard u.t. rank function. As a bimodule, SMkS1 =
me

S, m copies of the
i=l

bimodule S where S acts on the left in the obvious way, and S1 acts

on the right via the embedding of S1 in S. m

O S
1

from

s

O to O IDS given by right multiplication by 0 (1,0,0...)

00) O S1 0 0(
is M2(T), where T is the tensor ring over S o S1 = S on the bimodule

S1

m m
m-

e So S$ S, which is a S$ S. This is the direct sum of n2 m-1 simple
i=1 S S1 i=1 S1

m

bimodules; so T S<X> where X is a set of n2 m1 elements which we
2 m1 m

identify with n
m

S-centralising generators of this bimodule. Hence, the

universal localisation of T at its unique rank function is

By 13.1, the universal localisation of S IDS at the map
i=1
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Therefore, is a universal localisation of SQkSl thatS

O S1

is simple artinian, and the rank function induced on this ring is p; so

S o S1.
k

We can use our methods in a rather more complicated way in order

to investigate simple artinian coproducts of the form Mm(k) o M (k); we
k

n

should like to show that these are all suitably sized matrix rings over a

free skew field on a suitable number of generators. We are not able to deal

with this degree of generality at present, but there are a number of special

cases of interest where we can prove this result; we shall also show that

they are all suitably sized matrix rings over stably free skew fields. A

skew field, F, is said to be stably free, if F o k<X = k<Yl, for a
k

finite set X. Of course, if m divides n, our last theorem applies to

show that Mm(k) o M (k) =` M(k(X3) for suitable X; this actually allows
k

n n

us to prove the next theorem with little effort. Before we do this, we note

a few generalities. We write Mm(k) o Mn(k) = Mp(F); since the rank function
k

on Mm(k) k Mn(k) has as image p where p is the least common multiple

of in and n, and M (F) is the universal localisation of M (k) u M (k)p m k n
at this rank function, it follows that p is the least common multiple of

m and n.

Theorem 13.9 Suppose that Ms(k) k Mt(k) = Mp(F), where p = l.c.m.{s,t};

then Msn(k) o Mtn(k) = M n(F o for a suitable finite set Y.
k i k

Proof: Msn(k) o Mn(k) Z for some set Z1 by 13.8. So
k

Msn(k) k Mtn(k) - Msn(k) k Mn(k)
M (k)Mtn(k)

°
M

(o k)Mtn(k); this

n n

is isomorphic to Mn(Ms(k(Z1j) o Mt(k)) as we see by taking the centraliser
k

of M (k) inside it.
n

Ms(k(Z1.) o Mt(k) = Ms o Mt(k)

k Ms (k) k

M (k(Z ?) 0 M (F). Taking the centraliser of M (k), we find thats M (k) p s
s
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this is the ring Ms(k(Z 0 MM.(F)), where p' = p/s.
k

k1Z o Mp(F) is the universal localisation of the hereditary
k

ring k<Z1> u Mp,(F) = k<Z1> u Mp,(k) U Mp,(F) = Mp,(k<Z2>) u Mp,(F),

k k p' (k) MP' (k)

where Z2 is the set of components of elements of Z1 written as matrices

over the centraliser of MP, (k) in MP,(k) u k<Z1>. It is clear that this
k

ring is just Mp,(F u k<Z2>), which is a hereditary ring whose only universal
k

localisation that is simple artinian is Mp,(F o Tracing the argu-

ment back shows that Msn(k) o
MM tn(k)

= Mpn(F
k

In order to go a little further, we look at suitable universal

localisations of the ring R = Mm (k) m(k)OkMn(k) , which is a f.d.

0 M
n

(k)

hereditary k-algebra; we shall use 13.7 to find good universal localisations

of related rings, which allow us under suitable restrictions on m and n

to construct universal localisations of R at full maps with respect to the

rank function assigning the rank / to both indecomposable projectives,

that have the form M2P (k4X)).

We recall from the last chapter that the epimorphism from a f.d.

hereditary algebra, R, associated to a pre-projective or pre-injective

module right module is always a universal localisation. For our purposes, we
s

take R to be the ring (k k , where s 2! 2. We wish to find the rank
O k

function associated to a particular module M. This is given by

p ((O )R) _ [M(0 ):kJ/rM:k], and p ((O )R) _ [M( ):k]/[M:k]. We

summarise from Dlab, Ringel (76), what rank functions occur associated to

pre-projective or pre-injective modules over R; the pairs

k]) that occur are the positive real roots associated([M

C01

O\
) :k],[M

O
O

01):

to the graph, where there are s arrows from the first point to
t

3

second. Rather than developing here the precise theory which gives us these

positive real roots, we give an ad hoc description of them. We begin with

the pair (0,1); our inductive procedure is to pass from the pair (a,b)
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to the pair (b,sb - a); finally, if (a,b) is a pair constructed above,

then (b,a) is also a pair.

If (a,b) is a particular positive root corresponding to a

module M, then CM:k] = a + b, (so that the rank function `associated to

the epimorphism given by M is
P((O O)R) as+b , P ((O

11)R)
= aalb . That

s /

is, we have an epimorphism from
k0

k to Ma
+ b(k)

which must be a

universal localisation at the above rank function.

By Morita equivalence, we must have an epimorphism from

Mb(k) Ss to M2ab (k), which is a universal localisation. Here, S

0 Ma (k)

is the unique simple left Mb(k), right Ma(k) bimodule. The rank function

associated to this universal localisation is the standard u.t. rank function.

Consequently, we consider the ring Mb(k)

Mb(k)

0 Ma (k)

We see from the above that we have a universal localisation of this which by

13.1, has the form M
2

( T ) , where T = M ab(k)<(M

ab
(k)

M
®

b (k)

Sab-s

% (k)Mab (k)>.

A dimension check shows that the bimodule in the brackets is isomorphic to

Mab
(k)ab(ab-s)

as Mab(k) bimodule. Consequently, T = Mab(kEW, where

IXI = ab(ab-s).

Therefore, the universal localisation of Mb (k) Mb(k)®kMa(k)

0 Ma (k) ,

at the rank function we are considering is M2ab However, so is

M2(Mb(k) o Ma(k)); therefore, Ma(k)
k0
Mb(k) =

We summarise what we have shown in the next theorem.

Theorem 13.10 Let (a,b) be a positive real root associated to the graph

where there are s arrows from the first point to the second. Then

Ma(k) o Mb(k) where IXI = ab(ab-s).
k
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If s = 2, the pairs (a,b) that occur as positive roots are

exactly the pairs (n,n+l) or (n+l,n), so that

Mn(k) o Mn+l (k)
-
M
n(n+l)

for a suitable finite set X. We use this
k

to prove the last result of this section.

Theorem 13.11 Let m and n be arbitrary positive integers; then

MM(k) o Mn(k) = Mp(F), where P is the least common multiple of m and
k

n, and F is a stably free skew field.

Proof: By 13.9, we may assume that m and n are co-prime, since we may

reduce to this case. Let s and t be integers such that sm = to + 1.

We know that Mmst(k) o Mnst(k) - Mmnst(F o
k k

by 13.9.

But M (k) o M (k) = M (k) o M (k) O M (k) o M (k),
mst k nst mst M (k) ms k nt

M
(k) nst

ms nt

which is isomorphic to M (k)
M

o M (k4Z)) o M
nst

(k) by 13.10,
mst ms (k) must

M
(k)

nt

for a finite set Z, since sm = to + 1. If a divides b,

Ma (k) o Mb(D) = Ma (k) o Mb(k) o Mb(D) which is

0

Mb(D), by
k k Mb(k) Mb(k)

13.8; this is isomorphic to Mb(D o
k

the proof that Mmst(k) o Mnst(k) = where Z' is a finite

set.
k

We have no examples of a skew subfield of a free skew field that

is not itself free, so certainly, we have no examples of stably free skew

fields that are not free. At present, it is not clear how these matters will

eventually settle themselves.

Artin's problem for skew field extensions

The purpose of this section is to construct extensions of skew

fields E D F such that the left dimension of E over F, [E:F]1, and

the right dimension of E over F, [E:F] r, are an arbitrary pair of integers

greater than 1. In fact, we shall consider a slightly more general problem;

what are the possible pairs of integers for the left and right dimension of

a simple artinian ring M
n

(E) over a skew subfield F? We shall see that



207

arbitrary pairs of integers greater than 1 and divisible by n occur; that

the left and right dimensions are divisible by n follows from the observa-

tion that Mn(E) as a left or right module over itself is the direct summand

of n isomorphic simple modules.

We shall actually prove something rather stronger than this, and

the extra strength will be important in the final section where we shall

construct hereditary artinian rings of representation type 12(5). In order

to set up the notation used throughout this section, we state precisely what

we shall prove. Throughout this section, the skew fields E and F, the

elements {eij:i = 1 to n}, the elements {skj:k = 1 to a, j = 1 to n},

the elements {tih : i = 1 to n h = 1 to b} and the integers n, a and b

will be named as in the following theorem.

Theorem 13.12 Let M(E) D F, where E and F are skew fields. Let

{eij: i,j = 1 to n) be a set of matrix units in Mn(E). Let a,b be integers

such that an, bn > 1: let {skj:k = 1 to a, j = 1 to n} be elements of

M
n
(E) that are left independent over F such that s kjeJ..7 = skj and let

{tih: i = 1 to n, h = 1 to b} be elements of Mn(E) that right independent

over F such that eiitih
= tih.

Then there exist skew fields E E,

F D F and a diagram of rings: M
n

(E) M
n

(E)UU
F F

where F n Mn(E) = F, a left basis for Mn(E) over F is {skj } and a

right basis for Mn(E) over F is {tih}.

In order to construct E and F in theorem 13.12, we shall need

an intermediate construction.

Theorem 13.13 Given the data of theorem 13.12, there exist skew fields E'

and F' and a diagram of rings: Mn(E') Mn(E)

U U

F' F

where F' n Mn(E) = F, a basis for F'Mn(E) over F' is {skj } whilst

the pointed bimodule (Mn(E)F',1) is isomorphic to (Mn(E)OFF',101).

Notice that the extension of rings Mn(E') D F' still satisfies

all the conditions originally stated for the extension of rings M
n
(E) D F.

There is also a version of theorem 13.13 interchanging the role

of left and right, of a and b, and of {skj } and {ti }, which we leave
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to the reader to formulate; we shall refer to this as theorem 13.13' when we

need to mention it.

13.13'.

We begin by showing how theorem 13.12 follows from 13.13 and

We begin with the extension of rings Mn(E) F; for inductive

purposes we set E = E0 and F = F0.

At an odd stage in our construction we assume that we have a

diagram of rings: Mn(E2 ) ' F2

U m U m

Mn(E0) FO

such that F2m n Mn(E0) = F0 and E2m, F2m are skew fields such that the

conditions of theorem 13.12 are satisfied on replacing E and F by E2m

and F2m; by theorem 13.13, we construct skew fields E2m
+ l' F2m + 1

with a diagram of rings:

Mn(E2m + 1)
F + 1

U U

Mn(E2m) F2m

such that F2m
+ 1 n Mn(E2m) = F2m,

a left basis for F2m
+ 1Mn(E2m)

over

F2m + 1
is {ski} whilst (Mn(E2m)F2m + 1, 1) - (Mn(E2m) OF2mF2m + l'

101)

as pointed bimodule. It follows also that Mn(E0) n F2m + 1 =
F0 and that

the conditions of theorem 13.12 are satisfied with E2m
+ 1

and
F2m + 1

replacing E and F.

At an even stage of the construction, we assume that we have an

extension of rings: Mn(E2m
- 1) D F2m - 1

U U

Mn (Ep) D F0

such that F2m
- 1

n Mn(E0) = F0 where E2m
- 1 and F2m - 1 are skew

fields such that the conditions of theorem 13.12 are satisfied on replacing

E and F by E2m - 1 and F2m
- 1; using theorem 13.13', we construct

skew fields E2m and F2m with a diagram of rings:
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Mn(E2m)
F2m

U U

M n (E 2m F - 1
such that Mn(E2m

- 1) n F2m = F2m - 1,
a right basis for Mn(E2m

- 1)F2m

over F2m is
{tih}

whilst (F2mMn(E2m
- 1),1) - (F2mF Mn(E2m -

1),le1)

2m-1

as pointed bimodule. It follows that Mn(E0) n F2m = FO and that the condi-

tions of theorem 13.12 are satisfied with Elm and F2m replacing E and

F.

On setting E = UE,, F = UF,, we have an extension of rings

Mn(E) 0 F such that Mn(E) n F = F. If s e Mn(E), it lies in Mn(E2p

for some integer p; consequently it is left dependent on {skj } over

F2p + 1
and right dependent on {tih} over F2p

+ 2'
If there is a

dependence relation between the elements {skj } on the left over f, the

dependence relation actually occurs over Fq for some q; however, this

cannot happen by construction; similarly, the elements {tih} remain right

independent over F. Therefore, the elements {skj} are a left basis for

Mn(E) over F, and the elements {tih} form a right basis, which completes

the proof of theorem 13.12 assuming that we can prove theorem 13.13.

It remains to be seen how to prove theorem 13.13. There are two

problems to overcome; firstly, we must construct a skew field F' n F and

an F', M
n
(E) bimodule M with an F-centralising generator x such that

[M:F'] = an with basis {xskj}; secondly, we must construct a simple

artinian ring Mn(E') containing F' and Mn(E) such that

(F'Mn(E),l) ° (M,x) as pointed F', Mn(E) bimodule. We have already seen

an approach to the second construction; we set M (E') = F' o M (E); for
n

(M,x)
n

the first construction, we set Man(F') = Man (F) o Mn(E); let gas be matrix
F

units where a and B run over pairs kj for k = 1 to a and j = 1 to n;

let M = g11 11Man(F') and x = g11
11'

we have yet to show that x is a

generator of the bimodule M. Certainly, [M:F'] = an, and we intend to

show that {xskj } is a basis for M over F'. For the time being we rename

the elements {skj } as the elements sa since the indexing sets are the same.

If the elements {xs
a

} are not a basis, there is a relation Ef
a
xs

a
= 0 for

elements fa a F'; rewriting this equation in the ring Man(F') we find that
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the row whose ath entry is f
a

kills the matrix which lies in

Man (F)
F
Mn(E), Eg This implies that the element Eg lies in a

left ideal of rank less than 1 where the rank is the unique one on

Man (F) u Mn (E) ; in turn, /O Egallsa\ of T = /Man (F) M an(F)O Mn (E)
F / 1 /

0 0 / \ 0 Mn (E)

must lie in a

)

ideal of standard u.t. rank < Left ideals of T

(F) ®FI\ N \ where I is ainside TI 0 0 I take the form /0 Man

0 I / \0 0

left ideal of Mn (E) and N is an Man (F) submodule of Man (F)OFMn (E) .

Its standard u.t. rank is /(p(I) + p(N)). Let
J= O Man(F)o I 0 N be a left ideal of T containing

0 I 0 0

0 Egall of standard u.t. rank < .

0 0

We have a map from
g11 11'FEFsa

<_ Man(F)O FI ® N to
g11

N.

From the inequality p(I) + p(N) < 1, we deduce that

11N:F] < an(l - p(I)); so we find that [aFSa n I:F] > anp(I).
[g11

It is convenient to return to the kj notation rather than

indexing by a.

Since p(I) = m/n < 1 for some integer m, then for some i,

I n Mn(E)eii = 0, and so, I n EFski = 0; then p(I + Mn(E)eii) _ (m + 1)/n
k

and also [(I + Mn(E)eii) n E Fskj:F] > anp(I) + a = an(p(I + Mn(E)eii));
k,j

we set I' to be I + M
n
(E)e

ii
and if I' S M

n
(E), we repeat the argument;

by induction, we eventually find an = CMn(E) n E Fskj:F] > anp(tin(5)) = an.
k,j

This contradiction shows that the element Egallsa is not a

zero-divisor in Man(F') and so, the elements
{g11 llskj}

form

a basis for M =
g11

11Man(F') over F'. So, M is a cyclic F', Mn(E)

bimodule on the generator x.

We consider the simple artinian ring M (E') = F' 0 M (E);
n

(M,x)
n
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we already know that (F'Mn(E),l) is isomorphic to (M,x) as pointed F',

Mn(E) bimodule; so F'Mn(E) has as left basis over F' the set {skj}.

Also, F' n M
n
(E) = F; for let s e M (E) such that xs = fxn

for some element f in F'; rewriting this equation in Man (F') gives

g11 11s = fg11 11'
so, inside Man(F) 0 Mn(E),

g11 11sg11 = g11 lls;
it

follows that s lies in F and s = f. Another way of stating this is

that the normaliser of x in M is F.

It remains to show that (M
n
(E)F',l) is isomorphic to

(Mn(E)OFF',101); in order to prove this, it is simpler to prove the follow-

ing more general result.

Theorem 13.14 Let R be a semihereditary ring with faithful projective

rank function p taking values in

n

Z; let a:P be an atomic full

map between f.g. left projectives; let N be the normaliser of a which we

regard as a subring of E(P) = EndR(P) and E(Q) = EndR(Q) via the

embedding as left and right normaliser respectively; then, in the category

of f.g. projectives over R a and of Rp, (E(Q)a-lE(P),a-1) is isomorphic

as pointed bimodule to (E(Q)ONE(P),1M1).

Proof: It is immaterial whether we consider the bimodule in the category of

f.g. projectives over Ra or over RP since {a} is a factor closed set

of maps and so by theorem 5.8 Ra embeds in Rp.

Certainly, there is a natural map from E(Q)%E(P) to

E(Q)a-1E(P) sending 101 to a-l. It remains to check that there is no

kernel.

There are two natural maps from HomR(Q,P) to E(Q)%E(P);

l:g Sa&1 and *2:8 -r 1Ha6, and their images agree under the natural map

from E(Q)@NE(P) to E(Q)a-lE(P). However, we have the relation

a(8a) = (as)a from which we see that the element of N that goes to 8a

in E(Q) goes to a8 in E(P); it follows that the maps
01

and
*2

agree; it is an embedding since the composition with the map to

E(Q)a-1E(P) c Hangp (Rp RQ,RpQ
R
P) is the embedding of Hom

R
(Q,P); we shall

regard HanR(Q,P) as an E(Q),E(P) sub-bimodule via this map.

n
Consider a relation in E(Q)a-1E(P);

1/ E Sla
y1 +

0
i=1

where 6 e HomR(Q,P); we shall show by induction on n that the relation
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n

Ea ey
+ 6 = 0 holds in E(Q) @N E(P); so far we have shown this to be

i=l

true if n = O.

From the relation 1/, we find that the map

has nullity p(P) = p(Q).

We write an equation expressing this defined over R:

a o

u and v must be full maps such that Vv = By 1.19, there is an

O a

invertible map a such that ue = I 0 and ev =

for full maps u,,v.

equation:

we may adjust our previous equation to obtain the

Since a is an atomic full map, we may further assume that one of u,,v, is
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an identity map whilst the other is a. If ul = a, Y1 = aTi which lies in

N and this allows us to shorten our relation by using a relation holding in

E(Q)& E(P); by induction we deduce that our original relation is a

consequence of relations in E(Q)®NE(P). Similarly, if un is an identity

map and v
n

= a, then B
n

= a
n
a and again our relation is forced to be a

consequence of a relation in E(Q)QNE(P). So, we may assume that u1 is

the identity map on P and un = a; let Vk + 1 be the first
ui

that is

equation with this information:

Since the top left hand corner of the leftmost map on the right hand side is

invertible, we may adjust our equation again to obtain:

C

0

0

61 Bn 1 -d al . ak . . . . an

From this, we have the relations via + aWi = O:qi a E(P),Wi E(Q);

so mi and
wi

lie in the left and right normaliser of a respectively.

Further, we have the relation Yk + 1 = aTk + 1;
once again, this

allows us to shorten our relation by one that holds in E(Q)%E(P), and by

induction, the relation 1/ is a consequence of a relation in E(Q)OnE(P).

We have shown that in all circumstances EBiOYi + d = 0, which

is what we needed to prove our theorem.

To complete the proof of theorem 13.13, we need to show that this
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last result implies that inside F' 0 M (E), (M (E)F',l) is isomorphic
n n

(M,x)

to (Mn(E)QFF',1®1).

We regard M (F' 0 M (E)) as the universal localisation of
2

(M

IX) n

the matrix ring T = IF, M \ at the standard u.t. rank function. Let

\O Mn(E)/

P = IF O\ and let o = k M and a:P -r Q be right multiplica-

(E)

tion by O x ; then EndR(Q) = Mn(E) and EndR(P) = F'; the isomorphism

O O

between F' o M (E) and End (T P) is induced by the map that sends
(M,x)

n TP P T

F' to EndR(P) and Mn(E) to aEndR(Q)a-1. Therefore, we need to

calculate the pointed bimodule (aEndR(Q)a-lEndR(P),l) as

aEndR(Q)a-1, EndR(P) bimodule; since a is an injective map, this is the

same as calculating (End R(Q)a-1EndR(P),a-1) as EndR(Q), EndR(P) bimodule.

Since a is an atom, our last theorem shows that this isomorphic to

(EndR(Q)ANEndR(P),101) as pointed bimodule, where N is the normaliser of

a; this is just the normaliser of x c M which we have shown is F.

Therefore, (Mn(E)F',l) is isomorphic to (Mn(E)OFF',l0l).

This completes the proof of theorem 13.13 and, by symmetry,

theorem 13.13' follows; we have already seen that theorem 13.12 follows

from these.

An hereditary artinian ring of representation type 12(5)

In (Dowbor, Ringel, Simson 79) they showed that hereditary

artinian rings of finite representation type, by which we mean that there

are only finitely many f.g. indecomposable modules, correspond to Coxeter

diagrams in the same way that hereditary artinian algebras f.d. over a

central subfield correspond to Dynkin diagrams. The Dynkin diagrams are all

realised by suitable f.d. hereditary algebras, however, there were no known

examples of hereditary artinian rings whose representation type corresponded

to a Coxeter diagram that was not Dynkin since such example required an

extension of skew fields E D F where the left and right dimensions of E

over F are finite and different; we shall construct an hereditary artinian
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ring of representation type corresponding to the Coxeter diagram 12(5). At

present, there are no examples known corresponding to the other Coxeter

diagrams apart from H3 and H4 which arise as a trivial consequence of the

existence of suitable bimodules for I2(5).

A species is a directed graph whose vertices v are labelled by

skew fields D and whose edges e are labelled by bimodules M where M
v e e

is a D1e, DTe bimodule for ie the beginning and
re

the end of the edge

e. The tensor algebra of the species is a tensor algebra of the bimodule

® M over the ring XD , where D M = 0 if v x i and similarly
e e v v v e e
McDv = 0 if v x e. If R is an hereditary artinian ring of finite

representation type, it is shown in the paper cited that R must be Morita

equivalent to the tensor algebra of a species; so, the species may be

associated to R in a natural way; next the bimodules that occur in the

species of such an hereditary artinian ring of finite representation type

may be assigned an integer in a natural way (corresponding to suitable

linear data on the bimodule which we shall not explain in detail); replacing

the species by the underlying undirected graph with the edges labelled by

the integer associated to the given bimodule, we always obtain a graph whose

connected components are Coxeter diagram. Hereditary artinian rings

corresponding to the same Coxeter diagram have very similar module categories.

Next, we shall state precisely what conditions we need on a

bimodule to construct an hereditary artinian ring of type I2(5). Let E and

F be skew fields and let M be an E,F bimodule; we may form the F,E

bimodule MR = HomF(M,F); if [M:F]r = n, then [MR:F] = n also. If the

cardinals [M:F]r, [MR:E]r, [MRR:F]r ... are all finite, the bimodule is

said to have finite right dualisation; the sequence of cardinals is always

known as the right dimension sequence. We shall be interested in constructing

a bimodule such that the sequence of cardinals begins 2,1,3,1,...; in (Dowbor,

Ringel, Simson 79) it is shown that if such a bimodule exists the rest of

the dimensions are determined; further, the ring
E F

is an hereditary

artinian ring of representation type I2(5). First, we turn this information

on the bimodule into information on the skew fields E and F.

Let M be a G,H bimodule for skew fields G and H; if

[M:F]r = n, the action of G on M induces an embedding of G into Mn(H);

in turn we may recover M from an embedding of G into Mn(H) by regarding

the simple left M
n
(H) as G,H bimodule via the action of G induced by

its embedding in M
n
(H); by the duality of rows and columns in a matrix ring,
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it is clear that MR = HomH(M,H) is isomorphic as H,Mn(H) bimodule and

consequently as H,G bimodule to the simple right Mn(H) module. Therefore,

a bimodule sequence beginning a,b,c ... for an H,G bimodule M corresponds

to an embedding of G into Mb(H) such that [Mb(H):G]1 = ab whilst

[Mb(H):G]r = cb. In turn, if we have an E,F bimodule M which has a

right bimodule sequence beginning 2,1,3,1,... this corresponds to an

embedding of F into E such that [E:F]1 = 2, [E:F]r = 3, whilst for

the embedding of E into M3(F) given by the left action of E on itself

CM3(F):E]1 = 3 and [M3(F):E]r = 3. It remains to construct such an

extension of skew fields.

The construction

Let EO D FO be an extension of skew fields such that

CEO:F01 =2, and [EO:FO]r = 3; let {l,e} be a left basis whilst

{1 = el,e2,e3} is a right basis. The left action of E on itself together

with the given right basis induces an embedding of EO into M3(F0) where

x e EO is sent to the matrix (fi ) such that xe. = Eeifi.. Let
> > i 3

{g,.: i,j = 1 to 3} be matrix units corresponding to the basis chosen. Then

(M 3(F 0)g ill 911)
is isomorphic as pointed E0, F

0
bimodule via the given

embedding of EO into M3 (F ) to (EO,l).
O

We shall construct skew fields E F

U U

E0 FO

such that EO n F = FO, a left basis for E over F is {l,e}, a right

basis for E over F is {e1, e2, e3}; under the embedding of E into

M3(F) given by the choice of basis (and therefore extending the embedding

of EO into M3(F0)) a left basis for M3(F) over E is {g ii: i = 1 to 3}

which is also a right basis.

At an odd stage of the construction, assume that we have an

extension of skew fields Elm
F2m

U U

EO D F
0

such that a left basis for Elm over F2m is {i,e} a right basis is

fell e2, e3}. Under the embedding of E2m into M3(F2m) given by this

choice of basis we have the extension of rings: M3 (F2m) E2m
U U

M3(FO) EO
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such that a left basis for M3 (F2m) over Elm is {gii:i = 1 to 3}. By

theorem 13.12, there exist skew fields F2m
+ l' E2m + 1

and a diagram of

rings:

M3(F2m + 1 E2m + 1

U U

M3(F2m) E2m

such that a left basis for M3 (F 2m + 1) over E2m
+ 1 is

{g ii: i = 1 to 3)

which is also a right basis. We have an embedding of F2m
+ 1

into

E2m + 1, f' -+ f where g11f' = fg11 which extends the embedding of F2m

into E2m. Under this embedding, (E2m
+ l'

1) as pointed E2m
+ l'F2m + 1

bimodule is isomorphic to (M3(F2m + 1)g11,g11).
Since {e1911,e2g11'e3g11}

is a right basis for M3 (E 2m) over F2m and therefore a basis for

M3(F2m + 1)g11 = M3 (F2m)gll IF2mF2m + 1'
{e1,e2,e3} is also a right basis

for E2m
+ 1

over F2m
+ 1.

Also,
E2m n F2m + 1 = F2m

since it is not

E2m and CE2m:F2mI
r =

3. It follows that EO n F2m
+ 1 =

FO.

At an even stage of the construction, assume that we have an

extension of skew fields: E2m
- 1 F2m - 1

U U

E
0 = FO

such that EO n F2m - 1 = FO, and a right basis for E2m - 1 over

F2m - 1 is {el,e2'e3} . So, we have an embedding of E2m - 1 into

M3(F2m - 1) extending our embedding of E
0

into M3(F0). By theorem 13.12,

there exist skew fields E2m and F2m and a diagram of skew fields:

E2m F2m

U U

E2m - 1 F - 1

such that E2m
- 1 n F2m = F2m - l'

a left basis for E2m over F2m is

{l,e} whilst {el,e2'e3} is a right basis. Once more, we note that the

embedding of E2m into M3 (F2m) induced by this right basis extends the

embedding of E2m - 1 into M3 (F2m - 1 )'
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Consider the extension of skew fields, E F, where E = UEi, and
i

F = UFi. Any element of E lies in Elm
- 1 for some integer m and must

be left dependent on l,e and right dependent on el,e2,e3 over E2m; if

there were a dependence relation between 1 and e over F, this would occur

over some F
n

which we know does not happen; so, {l,e} is a left basis

for E over F and similarly {el,e2,e3} is a right basis. So,

[E:F7 = 2, and CE:F}r = 3. This choice of basis induces an embedding of

E into M3 (F) which is just the union of the embeddings of En into

M3(Fn) that we have considered at each stage of the construction. Any

element of M3(F) lies in M3(F2m) for some integer m; therefore, it is

both left and right dependent on {gii:i = 1 to 3} over E2m
+ 1'

Clearly,

there can be no dependence relation between the elements {gii:i = 1 to 3}

over E. So, [M3(F):E] = 3 = [M3(F):E] as we wished.
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