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PREFACE

The finite dimensional representations of a ring over commuta-
tive fields have been studied in great detail for many types of ring, for
example, group rings or the enveloping algebras of finite dimensional Lie
algebras, but little is known about the finite dimensional representations
of a ring over skew fields although such information might be of great use.
The first part of this book is devoted to a classification of all possible
finite dimensional representations of an arbitrary ring over skew fields in
terms of simple linear data on the category of finitely presented modules
over the ring. The second part is devoted to a fairly detailed study of
those skew fields that arise in the first part and in the work of Cohn on
firs and skew fields.

As has been said, the main goal at the beginning is to study
finite dimensional representations of a ring over skew fields. An alternative
view of this is that we should like to classify all possible homomorphisms
from a ring to simple artinian rings; such a study was carried out in the
case of one dimensional representations which are simply homomorphisms to
skew fields by Cohn who showed that these homomorphisms are determined by
which sets of matrices become zero-divisors over the skew field and gave a
characterisation of the sets of matrices that could be exactly those that
become singular under a homomorphism to a skew field. This theory has a
particular application to firs, rings such that every left and right ideal
are free of unique rank to show that they have universal homomorphisms to
skew fields. This applies to the free algebra over a commutative field, and
the ring coproduct of a family of skew fields amalgamating a common skew sub-
field, and gives the free skew field on a generating set and the skew field
coproduct with amalgamation.

In order to classify homomorphisms from a ring to simple artinian
rings, it is necessary to investigate what type of information a homomorphism

gives on the ring. The most obvious point is that it induces certain rank
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functions on the modules over the ring; over a simple artinian ring,
s = Mn(D), where D is a skew field, every module is a direct sum of
copies of the simple module, and the free module of rank one is the direct
sum of n copies of the simple module, so we can assign a rank to the
finitely generated modules over the ring taking values in %—Z so that the
free module on one generator has rank l. If there is a homomorphism from
R to S, we may assign ranks to the f.g. projectives or more generally
the finitely presented modules over R by p(M) is the rank over S of
MQRS. Considering the rank functions induced on finitely generated pro-
jectives is important for constructing universal homomorphisms from an
hereditary ring to simple artinian rings, whilst rank functions on finitely
presented modules are precisely what is needed to classify all homomorphisms
from the ring to simple artinian rings. The main result states that a rank
function p on the finitely presented modules over a k-algebra R taking
values in %dz arises from a homomorphism to a simple artinian ring if and
only if it satisfies the following axioms:
1. p(Rl) =1;
2. p(a®B) = p(a) + p(B);
3. if A+ B > C > O is an exact sequence of finitely presented modules
then p(C) < p(B) < p(A) + p(C).

If R 1is a ring that is not a k-algebra, it is necessary to
have a fourth axiom:
4, p(R/mR) = O or 1 for any integer m.

Two homomorphisms ai:R > Si induce the same rank function if

and only if there is a commutative diagram of rings:

/Sl\
R~\\\\\\ //////,s
2
In chapter 1, we begin the study of hereditary rings and rank
functions on finitely generated projectives over them. In the main, it is a
study of the category of finitely generated projectives and the ranks that
the rank function induces on the maps in the category. It is shown that this

behaves in a very similar way to the rank functions on von Neumann regular

rings, which is where the notion of a rank function came from; this analogy



ix

is developed to its logical conclusion in chapter 6, where it is shown that
a rank function taking values in the real numbers defined on the f.g. pro-
jectives over an hereditary ring must arise from a homomorphism to a von
Neumann regular ring.

Chapter 2 sets forth the first of the ring constructions that
are needed in order to construct homomorphisms, the ring coproduct amalgama-
ting a semisimple artinian subring. On the whole, it is a summary without
proofs of Bergman's coproduct theorems. Chapter 3 shows how projective rank
functions behave under the coproduct construction. It is also shown that if
a module M over R requires n generators then the module MQRR' over

1
the ring coproduct R' of R, and R amalgamating a skew subfield F

still requires n generatorslprovidedzthat there are finitely generated
modules over R2 requiring arbitrary large numbers of generators; the
condition is clearly necessary. This may be regarded as the analogue of the
Grushko Neumann theorem. The results on projective rank functions are applied
to prove a recent theorem due to Linnell; a finitely generated group is
accessible if there is a bound on the size of finite subgroups.

Chapter 4 presents the second important construction, adjoining
universal inverses to maps between finitely generated projectives over a
ring; this was studied by Cohn for matrices in order to construct homo-
morphisms to skew fields, but it has usually been regarded as a difficult
technique, although it has arisen, usually in disguised form, in a number
of contexts. For example, one of the methods used for showing that some
finite dimensional algebra is of wild representation type amounts to adjoin-
ing a universal inverse to a suitable map. There are a number of ways of
studying this construction developed recently which make it a little easier
to calculate with and to think about, and the aim of this chapter is to
present them. At the end, the algebraic K-theory of a universal localisation
is discussed; there is an exact sequence for the algebraic K~theory that
generalises the Bass, Murthy sequence for central localisation.

Chapter 5 pulls together the various pieces presented in the
first four chapters in order to construct universal homomorphisms from an
hereditary algebra with a rank function on its finitely generated projectives
to a simple artinian ring. The idea is fairly simple; given a rank function
p on an hereditary ring R, we ask which maps between finitely generated
projectives have a chance of becoming invertible under a homomorphism from
R to a simple artinian ring that induces the given rank function; if

o:P > Q@ 1is such a map, then p(P) = p(Q) and o cannot factor through a



projective of smaller rank. Such maps are called full maps. The universal
localisation of an hereditary ring at all full maps with respect to a rank
function taking values in %—Z is a perfect hereditary ring and it is

simple artinian in a large number of interesting cases. Chapter 6 completes
this circle of ideas by showing that if R is an hereditary ring with a
rank function on its finitely generated projectives taking values in the
real numbers, there is a homomorphism from R to a von Neumann regular ring
with a unique rank function that induces this rank function on R. This
theorem actually holds provided that all countably generated right and left
ideals over R are projective, which means that it applies to a von Neumann
regular ring with a rank function.

Chapter 7 contains a number of results on homomorphisms to
simple artinian rings beyond those that were discussed above. The space of
all possible rank functions on finitely presented modules over a k-algebra
that satisfy the axioms we stated earlier form in a natural way a Q-convex
subset of an infinite dimensional vector space. Given two rank functions
that satisfy the axioms given, so does the rank function qlol + quz where
aQ, and q, are positive rationals such that 9 + q, = 1. It is shown in
the course of chapter 7 that every rank function p has a unique expression
in the form Eqipi where q, are positive rationals such that q; = 1 and
p; are rank functions that cannot be written as the weighted sum of different
rank functions. So, the space of all possible rank functions is a sort of
locally finite dimensional @Q-simplex.

The methods and theorems developed in the first part of this
book are of great use in studying the skew fields constructed by Cohn, and
the second half of this book is a fairly detailed investigation along these
lines.

In chapter 8, we investigate what is known about the centre of
the skew field and simple artinian coproduct. We have a complete answer when
we amalgamate over a central subfield; however, the results are rather
incomplete for simple artinian coproducts where none of the factors are skew
fields. Chapter 9 continues with a detailed discussion of the finite dimen-
sional division subalgebras of skew field coproducts and a number of other
related skew fields. As an example of the odd results that occur, it is

shown that if E and E are skew fields containing no elements algebraic

1 2
over the central subfield Xk, then El ﬁ E2 the skew field coproduct of
El and E2 amalgamating k can sometimes contain a finite dimensional

field extension L of K, but if it does, [L:k] must be divisible by two
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different primes; there is an example where [IL:k] = 6. There is also an
example of a skew field D with centre k such that DskkS and

-0
DﬁkkP are skew fields where kS is the separable closure of k, and

kP is the inseparable closure of k but Dﬁki = MP(D') for some skew
field D', where k is the algebraic closure of k; this settles a
question of Cohn and Dicks.

Chapter 10 develops the technique of the universal bimodule of
derivations in order to distinguish between various non-isomorphic skew
fields. In particular, it is shown that the free skew field on m generators
cannot be isomorphic to the free skew field on n generators for m # n,

It also gives a way for recognising when a skew field is a universal localisa-
tion of an hereditary subring.

Chapter 11 continues the investigation of the skew subfields of
a skew field coproduct; we are particularly interested in the commutative
subfields of such skew fields and in centralisers in matrix rings over a
free skew field. In the first case, it is possible to bound the transcend-
ence degree of commutative subfields of a skew field coproduct in terms of
the transcendence degree of commutative subfields of the factors and the
amalgamated skew field of the coproduct. For centralisers, it is shown that
a skew subfield D with transcendental centre of Mn(F) where F 1is a
free skew field over k has a finitely generated centre over k of trans-
cendence degree 1, its dimension over its centre is finite, and this
dimension must divide n2. At the end of the chapter, it is shown that a
2 generator skew subfield of a free skew field must either be free on those
2 generators or else it is commutative.

Chapter 12 develops the characterisation of the universal
localisations of hereditary rings that are skew fields which was developed
in chapter 10 into a characterisation of simple artinian universal localisa-
tions of hereditary rings; then it is shown that if T 1is a subring of a
simple artinian universal localisation of the hereditary ring R that
contains the image of R so that the map from R to T is an epimorphism,
then T 1is itself a universal localisation of R. It follows from this
result that epic endomorphisms of the free algebra over a commutative field
are isomorphisms; this is the non-commutative analogue of the Jacobian
conjecture.

The final chapter presents among other things a solution to an
o0ld problem; it is shown that for any pair of integers a,b > 1, there

exists an extension of skew fields E > F such that the left dimension of
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E over F 1is a, whilst the right dimension is b. By extending the
construction, it is possible to construct a new class of hereditary artin-
ian rings of finite representation type. In order to effect these construc-
tions, we develop a new type of hereditary ring construction, the bimodule
amalgam rings; these are rings generated by two simple artinian rings S
and S*' subject only to conditions on the S, S' bimodule

ss' = {Zsisi: s, € s, si € S'}. when we are able to show that these
hereditary rings have a rank function, their properties are of particular
interest. In addition to the results mentioned above, they also allow us

to construct isomorphisms between skew fields that at first glance appear
to be quite different. As an example, it is shown that if El and E2 are
division subalgebras of the skew field F such that [El:k} = [Ez:k]

where k 1is a central subfield, then F g E is isomorphic to F g E

There are a number of people thatlI should like to thank foi
their encouragement and help during the proving of these results and
subsequently during the time that I was writing them down. The first person
I should like to thank is Warren Dicks with whom I have discussed most of
the results of this book; his care and accuracy have been of great assist-
ance to me and many of the results have arisen out of conversations between
us. I should also like to thank Paul Cohn for his interest and encourage-
ment; I owe him a particular debt for having proven the first results in
this area. I should also like to thank Rufus Neal for bearing with me
despite the length of time that it has taken me to get this book into his
hands at Cambridge University Press, and I am very grateful to Diane Quarrie

for typing this book so well from a partial typescript of poor quality.
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Homomorxphisms to simple artinian rings






1 HEREDITARY RINGS AND PROJECTIVE RANK FUNCTIONS

Definitions and preliminaries

In this chapter, we introduce the two main subjects of the first
part of this book; hereditary rings and the projective rank functions on
the rings, which we need in order to study their homomorphisms to simple
artinian rings.

A left hereditary ring is one such that all left ideals are

projective modules. We shall be interested in a number of variants of this

definition; a left semihereditary ring is one such that all finitely

generated left ideals are projective and a left X, -hereditary ring is one

such that all countably generated left ideals are projective. We shall often
need to consider the two-sided properties, whose definitions we leave to
the reader; our results tend to work most often in the case of two-sided

X,-hereditary rings. We shall tend to miss out the words 'two-sided', when

using these conditions. There is a two-sided condition implied by all of

the one~sided conditions above; a ring is weakly semihereditary if, for all

pairs of maps o : PO > Pl,B : Pl > P2 between finitely generated projective

modules such that aBf = O, then Pl = Pi ® Piﬂ where the image of o lies
in Pi and the kernel of R contains Pi. This is a two~sided condition
because of the duality between the category of finitely generated left
projectives and finitely generated right projectives induced by HomR(_JR).
We shall abbreviate 'finitely generated' to f.g., 'finitely
presented’' to £.p., and, in the case of vector spaces over a skew field, we

abbreviate 'finite dimensional' to f.d.
Lemma 1.1 A left semihereditary ring is weakly semihereditary.

Proof: Suppose that o : Po > Pl,B H Pl > P2 are two maps such that of = O,

where Pi is a finitely generated projective for i =0, 1, 2. The image

of B 1is a projective module, so Pl = imfeékerB, and the image of o lies



in the kernel of B.
A good reason for introducing the notion of a weakly semi-

hereditary ring is the following theorem due to Bergman.

Theorem 1.2 Every projective module over a weakly semihereditary ring is

a direct sum of finitely generated projective modules.

We refer the reader to 0.2.9 of Cohn (71) for a proof of this

result,

We shall work as long as possible with weakly semihereditary
rings; however, we shall eventually be forced to restrict our attention to
two-sided X,-hereditary rings. This class of rings draws much of its initial
interest from the fact that all von Neumann regular rings have this property.

By a von Neumann regular ring, we mean a ring R, such that for all x in

R, there exists an element y such that xyx = x; we shall see that there
are interesting connections between these classes of rings.

Much of the work of this chapter is just a study of the category
of finitely generated left projective modules over a weakly semihereditary
ring. This has been done with a great deal of success for semifirs and firs
by Cohn (71); a fir is a ring such that all left ideals and right ideals are
free of unique rank, and a semifir is a ring such that all finitely generated
left ideals (and so, all such right ideals too) are free of unique rank. In
this case, the arguments work well because we have a good notion of the size
of a finitely generated projective, and so we would like to have a generalisa-
tion of this idea for other rings. The relevant idea comes from the theory of
von Neumann regular rings.,

Given a ring, R, we associate to it the abelian monoid PQ(R)
of isomorphism classes of f.g. projectives under direct sum. We may also

associate to it a pre-ordered abelian group, the Grothendieck group, KO(R).

It is generated by the isomorphism classes of finitely generated left pro-
jective modules [P], subject to the relations [PeQ] = [P] + [0], for every
pair of isomorphism classes [P], [Q]. The pre-order is given by specifying

a positive cone, by which we mean simply a distinguished additive submonoid
of positive elements, and, in this case we take the isomorphism classes of
finitely generated projective modules, [P]. It is clear that KO(R) is the
universal group associated to P(R). Two projectives P and Q are said

to be stably isomorphic when [P] = [Ql; this is equivalent to the existence




- n
of an equation P$§1=Q$R.

A projective rank function on a ring R is a homomorphism of

pre-ordered groups, p : KO(R) -+ R, the real numbers, such that p([Rl]) =1,
By definition, p([P]) 2 0; we shall call a rank function faithful if
p(LP1) > 0, for all non-zero P. We shall often simplify the notation by
writing p(P) for p([P]). We note that a projective rank function is a
left, right dual notion, because of the duality HomR(—,R).

A partial projective rank function is a homomorphism of pre-

ordered groups p : A R, where A 1is a subgroup of KO(R), containing
[Rl], and the partial order is that induced from KO(R) by restriction.
We recall theorem 18.1 of Goodearl (79):

Theorem 1.3 Every partial projective rank function extends to a projective

rank function on R,

This result allows us to characterise those rings that have a

projective rank function. We say that a ring has unbounded generating number

if for every natural number n, there is a finitely generated module, M,
requiring at least n generators. It is an easy check that this equivalent
to the condition that for no m is there an equation of the form

RN = R(m+l)

®P; and this is a left, right dual condition, which justifies

the two-sided nature of our definition. Cohn mentions this class of rings in
(Cohn 71) under the guise of rings such that for all n, the n by n identity
matrix cannot be written as an n by (n-1) matrix times an f(n-1]) by n

matrix. We leave it to the reader to check the equivalence.

Theorem 1.4 A ring has a projective rank function, if and only if it has

unbounded generating number.

Proof: Certainly, if R has a projective rank function, it must have unbounded
generating number.

Conversely, if R has unbounded generating number, the subgroup
of KO(R) generated by [Rl] is isomorphic to %, and under the isomorphism,
no stably free projective module can have negative image. So this isomorphism
defines a partial projective rank function on R, which must extend to a

projective rank function by 1.3.

We have shown that most rings have a projective rank function; in



fact, projective rank functions arise quite naturally on rings and one is
forced to study them in order to solve certain types of problems.

If S 1is a simple artinian ring, it has the form Mn(D) for
some skew field D, and so, KO(S) can be identified in a natural way with
%—Z; so in this case, we have a unique rank function. If we have a homo-
morphism from a ring R to S, this induces a homomorphism from KO(R) to
KO(S), which is naturally isomorphic to %—Z; therefore, homomorphisms to
simple artinian rings induce rank functions to %-z, and we shall need to
consider such rank functions in order to study homomorphisms to simple
artinian rings. More generally, many von Neumann regular rings have rank
functions so that in order to study homomorphisms to von Neumann regular
rings we shall need to consider guite general projective rank functions.

These projective rank functions appear naturally in the representa-
tion theory of finite dimensional algebras, for if R is a finite dimensional
algebra over the field %k, and M 1is a finite dimensional module,

(M:kx] = m, this defines a homomorphism from R to Mm(k) and so determines
a rank function p on R; it is easy to see that if P is a principal

projective module over R, P = Re, then

_ [Me:kl
°o® = ek

which determines the projective rank function, since all f.g. projective
modules are direct sums of principal projective modules for an artinian ring.
Another class of rings with a projective rank function that
occurs naturally are the group rings in characteristic O. We have a trace
function on the group ring FG, where F 1is a field of characteristic O

o’ where go is the identity

and G 1is a group given by tr(Zfigi) = f
element of the group. We extend this to a trace function on the ring Mn(FG)
in the natural way and then we define the rank of an f.g. projective P to
be the trace of an idempotent e in Mn(FG) such that FG e & P. It is
well known that this is well-defined, taking values in @, and that it is
a faithful projective rank function. This will turn out to be useful to us

later on in proving results due to Linnell on accessibility of f.g. groups.

Trace ideals
It is often useful to be able to work with a faithful rank function

on a ring rather than one that is not; so we should like to have a way of



getting rid of the projectives of rank zero. There is a standard way of
dealing with this problem; we define the trace ideal of a set of f.g. pro-
jective modules, I, closed under direct sum to be the set of elements, T,
that lie in the image of some map from one of these projectives to the free
module of rank 1. It is easy to see that this set is an ideal, in fact, an
idempotent ideal known as the trace ideal of the projectives in I, and that
R/T 1is the universal R-ring such that R/TQRP =0, for all P in I.

We wish to study the behaviour of this construction.

Theorem 1.5 Let I be a set of f.g. projective modules closed under direct
sum over a ring R and let T be the trace ideal of this set of projectives.
For a f.g. projective, Q, R/‘TQR = 0, if and only if @ 1is a direct
summand of an element of I. The monoid of induced projective modules over
R/T 1is the quotient of PQ(R) by the relation P~P', if and only if

PBQ = P'®Q', where Q and Q' are direct summands of elements of I.

Proof: Suppose that R/TQRQ=O, then every element of Q lies in the
image of a map from an element of I to Q; since Q 1is finitely generated,
there must be a surjective map from an element of I to Q, which proves
the first assertion.

Suppose that R/’I‘QR(!:R/TQRP - R/T@RP' is an isomorphism over
R/T; so there is a surjection:
o®B: P®Q > P', where Q is a direct summand of an element of I. There-
fore, O -+ ker a®B +» P®Q - P' + O 1is a split exact sequence, where
R/TQR(!QB is an isomorphism, since it equals R/TQR(!. So kera @B becomes
O over R/T, and must be a direct summand of an element of I. Therefore,
as required, we have an equation of the form P®Q = P'@®Q'. The converse is
clear.

We have the following consequence:

Theorem 1.6 Let R be a ring with a projective rank function p; let T
be the trace ideal of the projectives of rank O; then p extends to a

projective rank function on R/T.

Proof: By the last theorem, there is a partial projective rank function
defined on the image of KO(R) in KO(R/T), induced by p. By theorem

1.3, this extends to a rank function on R/T.



We can do rather better than this on a weakly semihereditary
ring. First, we need the following result on the behaviour of Pe on passing

to the quotient by a trace ideal over a weakly semihereditary ring.

Theorem 1.7 Let R be a weakly semihereditary ring, and let T be the

trace ideal of the set of f.g. projectives, I, closed under direct sum;
then R/T is a weakly semihereditary ring, and Pe(R/T) is the dquotient
of PG(R) by the relation P ~ P' if and only if P@&Q = P'@Q', where

Q and Q' are direct summands of an element of I.

Proof: We denote passage to R/T by bars, so R = R/T.
Let o : P> P',B : P'>B" bea pair of maps such that o = 03
then over R, aB =8,y : P> Q, 6§ : Q » P", where Q is an element of 1I.

So, over R, we have

(o v) (8
-$

and we note that (ay)

it
(o]

il

&, and <_§> = é .
Since R 1is weakly semihereditary, P' & Q = P_@P where

1772

and ker 8 2P where

1 -5)= "1’ 2’
ima < Pl c ker 8, that is, the weakly semihereditary condition is satisfied

im(ay) € P therefore, P' = 51.05
for maps between induced projectives.
Let e : Rn -> Rn be a map such that 52 = é; that is, g(l—e) = 0,

c ker(i-e);

So, by the previous argument, R® = QLOPz, where im e =S ﬁl

but the image of e 1is equal to the kernel of (Izé), so im e = 51, which
shows that all f.g. projectives are induced, and, in consequence, R/T is
weakly semihereditary.

The rest follows from theorem 1.5.

This allows us to pass from a weakly semihereditary ring with a
projective rank function to a weakly semihereditary ring with a faithful
projective rank function, simply by killing the projectives of rank O. We

summarise this special case:

Theorem 1.8 Let R be a weakly semihereditary ring with a projective rank
function p; let T be the trace ideal of the f.g. projectives of rank O;

then R/T is a weakly semihereditary ring, and p induces a faithful



1
projective rank function on R/T. If p takes values in ;-Z, then R/T

is semihereditary on either side.

Proof: All is clear except for the last remark. In this case, R/T is a
weakly semihereditary ring with a faithful projective rank function, taking
values in %—Z. Let M be a finitely generated left ideal and let P be

a f.g. projective over R/T of minimal rank such that there is a surjection

a:P+M, If x lies in the kernel of this surjection, we have a sequence:

R/T + P + M < R,

whose composite is ©O; so P = Pl$P2, where x is in Pl, which is in

the kernel of the surjection. Hence, a P2 : P2 + M, 1is a surjection. Since

o(PZ) < p(P) unless x = O, we deduce that o : P + M must be an isomorphism.

We have already noted that trace ideals must be idempotent;

curiously, the converse is true for left hereditary rings as we see next.

Theorem 1.9 Let R be a left hereditary ring, and let I be an idempotent
ideal; then I 1is a trace ideal.

2
Proof: As a left module over R, I is projective and since I =1,
RﬂI@RI = I/Iz. Hence, the trace ideal of the projective module I must

contain I, but it can be no larger, since its image in R/I is trivial,

The inner projective rank

If we have a partial projective rank function, defined on

Par
A
the subgroup A of KO(R), we define the generating number with respect to

o of a finitely generated left module M over R by the formula:

A

g.pA(M) = inf {pA(P): [p] is in A, } a surjection P + M} .

B4

If all stably free modules are free of unique rank, and A' 1is the subgroup

of KO(R) generated by [Rl], the generating number with respect to o,

where is the unique rank function defined on A is the minimal number

Ppr
of generators of a module. So we could hope and we shall show that our more
general notion is a useful refinement.

We intend to use a projective rank function p to analyse the
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category of f.g. projectives over a ring R. We have a rank associated to
each object of the category, so, our next aim is to give each map a rank.
Let a : P+ Q be a map between two f.g. projectives; we define the inner

projective rank of the map with respect to p to be given by the formula:

pla) = inf[P,]{p(P') : 3 a conmutative diagram P » Q}
Pl

It is sometimes useful to have a related notion to hand; we define the left
nullity of a to be p(P) - p(a). Similarly, the right nullity of a is
defined by p(Q) - p(a). p(P) = p(Q), the nullity of a is p(P) - p(a).

We may relate the inner projective rank of a map and the generating

number of suitable modules.

Lemma 1.10 Let R be a ring with a projective rank function p; then the
inner rank of amap o : P > Q is equal to the following:
'me {g.0o(M): a(P) cMcQ, where M is a f.g. submodule of Q}.

In particular, if R 1is a left semihereditary ring,
p(a) = inf, {o(P"):a(P) cp'cQl.

Proof: If there is a commutative diagram P »Q, then a(P)cB(P')<cQ
X
and g.p (B(P')) <p(P'), so pl(a) EinfM{g.o(M):a(P) cMcQ}.
Conversely, if a(P) cMcQ, and there exists a surjection
P' - M, we have a commutative diagram P a;p, since P is projective.
Pl

Hence, opl(a) = infM{g.p(M):oz(P) cMcQ} .

Amap a : P+ Q is said to be left full with respect to p 1if
p(a) = p(P), and it is right full if p(a) = p(Q); it is full with respect
to p 1if it is left and right full. The reason for considering full maps
with respect to a projective rank function is that the only maps to have a
chance of becoming inverted under a homomorphism to a simple artinian ring
are the full maps with respect to the induced projective rank function; of
course, it is in general rather unlikely that they all do; however, we shall
find that for a hereditary ring there are homomorphisms for each projective

rank function that invert all full maps.
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We see that entirely the same theory may be set up on the dual
category of f.g. right projectives, where the rank of a f.g. right projective
module is that of its dual module. It is clear that the dual of a left full
map is right full and vice versa.

The important fact about the inner projective rank on a weakly
semihereditary ring is an analogue of Sylvester's law of nullity. We say
that a ring satisfies the law of nullity with respect to p, or, alternat-

ively, that the projective rank function P 1is a Sylvester projective rank

function, if for every pair of maps between f.g. projectives o : Po - Pl,
B : Pl - P2 such that af = O, then p(a) + p(B) < p(Pl). If R is a
ring such that all f.g. projectives are free of unique rank, and this rank

is a Sylvester projective rank function, R 1is a Sylvester domain.

Theorem 1.1l Let R be a weakly semihereditary ring with a rank function

p; then p 1is a Sylvester projective rank function.

Proof: Recall that if of = 0O for a : Po > Pl, and B : Pl > P2 over a
weakly semihereditary ring, then Pl = P'®P", where the image of o lies
in P', and the kernel of B contains P', so that R factors through

P". Hence pf(a) £ p(P'), and p(R) < p(P"), so that pla) + p(B) < p(Pl).

There are a few results that we can deduce from the law of nullity
for a projective rank function on a ring. On the whole, they are a little
technical, but since we shall need them later, it seems better to bore the
reader now than to break up the flow of later proofs. Their point is to
demonstrate the analogy between these rings with Sylvester projective rank

functions and simple artinian rings with the standard rank function.

Lemma 1.12 Let R be a ring with a Sylvester projective rank function p;
th i £ : - :

en for any pair of maps a Po Pl, B Pl > P2,
p(aB) 2p(a) + p(B) = O(Pl). In particular, this holds for weakly semi-
hereditary rings for any projective rank function.

aB
Proof: Suppose that P —————>P2 is a commutative diagram. Then we have

YO\Q/a

8
the maps (aly) : P > P ®0Q, (3)1 P®Q>Py, and (aly) <_B—6> =0 ;
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so, by the law of nullity, p(aly) +p é%) < D(Pl) + p(Q). But
pla) < p(a[y) and p(B) < p<£%) ; therefore p(a) + p(B) - D(Pl) < p(Q)

Taking the infimum on the right proves the lemma.
We have the following corollary:

Corollary 1.13 Let R be a ring with a Sylvester projective rank function
p. If o 1is right full, then p(aB) = p(R); dually, if o is left full,
then p(Ba) = p(B). In particular, the composite of left full maps is left
full, and the composite of right full maps is right full.

Proof: Let o : PO - Pl be right full, and let B8 : Pl - P2 be some map;
then p(B) 2 p(aB) 2 p(B) + pla) - p(P)) =p(B). So, plaB) = p(B). There-
fore, the composite of right full maps is right full., The rest follows by

duality.

Lemma 1,14 Let R be a ring with a Sylvester projective rank function op.

Let o : Pl > P2, and B : Ql -+ Q2 be a pair of maps; then

(¢]
pla) + p(B)Sp<$ s) S pla) +p(Q), p(B) + p(P).

(o}
Proof: Let P be a f.g. projective through which <$ 8) factors; then we
have an equation

o O § (e €,)
(75 = () =

Since = 0, the law of nullity shows that p(Gl) + p(g2) < p(P}); so

818,
pla) + p(B) < D(Gl) + 0(62) < p(P), and taking the infimum on the right

shows the first inequality.

If o e, § : Pl + P,e : P-+P2, then a0)_f60 € 0\
Yy B orf\yg/)’

so p<: 2) < p(P) + p(Ql), and taking the infimum over p(P)}) shows that

(+3)

A

pla) + p(Ql) ;
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similarly, if B = §'¢', §' : Ql +Q, e’ : Q= Q2, then we have the equa-

(59)-(39)(52)

So p(z g) < p(Q) + p(PZ), and taking the infimum over p(Q), we see that

tion:

a O
D(,Y B) < p(B) + o(Pz) .

We have one more dull lemma to put behind us:

Lemma 1.15 Let R be a ring with a Sylvester projective rank function p;
o
if a 1is right full or B is left full, p ¢ > = p(a) + p(B). Also, for

Y B
all o and B8, o(“o = pla) + p(B).

o8B

Proof: We use the notation of the last lemma.

pla) + p(B) <o z g < pla) + p(Ql); if B 1is left full,
p(B) = p(Ql), and so pl(a) + p{(R) = p<:g . A similar argument works if

o 1is right full.

If o = 6162, and B = g_.¢ we have the equation:

1-2'
o O §. O €, 0
= 1 1
(O B) (O <S2)(0 E2)

It follows that p(ﬁ :) = pla) + p(B) .

In order to get fairly decisive results, it is necessary to
restrict our attention to a two-sided X ~hereditary ring with a faithful
rank function. Dicks pointed out that the proof of the next main theorem,
originally stated for two-sided hereditary rings actually holds in the
greater generality. It is the central point in the proof that a rank function
on a two-sided Xo—hereditary algebra arises from a homomorphism to a von
Neumann reqgular ring, and the reader may well wish to read it only when he

comes to this theorem in chapter 6.

Theorem 1.16 Let R be a two-sided Xo—hereditary ring with a faithful

projective rank function. Then every map between f.g. projectives factors
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as a right full followed by a left full map.

Proof: First, we show that every map has a non-trivial right factor that
is left full.

If o : P> Q is not left full or right full, then, by Lemma
1.10, there exists Pl' im (a) ¢ Pl c Q, such that p(Pl) < p(P), p(Q),
and p(Pl) - pla) < 1.

If H Pl +~ Q is not a left full embedding, we may find P

a

1 2
such that Pl c P2 cQ, p(Pz) < p(Pl), and p(Pz) - p(al) < %; in general,
at the nth stage, if an-l : Pn—l

Pn’ Pn—l c Pn < Q, such that p(Pn) < p(Pn

+~ Q 1is not a left full map, we choose

1
—l)' and p(Pn) - p(an ) < Py

if this process does not terminate, we obtain the chain:

-1

ime € P, € P, € tieessenee € P C iuee. © .
1 2 n Q

HPn is a countably generated submodule of Q, so it is projective,

and must be a direct sum of f.g. projectives by 1.2. So uPn = P:'Lepé&) ey

N

Since ima is finitely generated, it lies in P§ = o p', for
i=1

where each Pi is a f.g. projective module.

some N. We claim that the embedding P& c Q is a left full map.

Since P& is finitely generated, P& c Pn for some n, and so,

P;:;Pm for all m 2 n., Moreover, it is a direct summand of each such Pm'

since it is a direct summand of their union.

Consider a f.g. submodule, Q', such that Pﬁ c Q' ¢ Q; consider

the split exact sequence:
> ] P & ] + ) -
(o} Pm no' > n Q' ~» Pm Q' >0 ;

Pm neo' > Pﬁ , so Pm noQ' = P;tDQ", for some module Q", and so

o(Pm neQ'y =2 p(P&).

] ] > -
Also, Pm—l c Pm c Pm + Q', so that p(Pm + Q") 2 p(Pm)

From the exact sequence, p(Pm) + p(Q") = p(Pm + Q') + p(Pm nQ'), and we

g~

have just shown that the right hand side is greater than or equal to
1 1
" + - — 1] 2 "y . :
p(PN) p(Pm) = SO that we can deduce p(Q") o(PN) W but this holds
for all m 2 n, and so we conclude that P& c Q must be a left full map

that is a right factor of a : P + Q; by construction, p(P&) < p(Q).
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By duality, we deduce that we can always find a right full left
factor of a : P>Q, when a is not left or right full, a = Bly, where
Bl
right full, by 1.13, we may assume that the right full map is to some sub-

: P> Q1, where p(Ql) < p(P). Since a sequence of right full maps is

module Ql of Q. So we have ima ¢ Ql < Q, where the induced map

a' : P > Ql is right full. If the map Yi : Ql c Q 1is not left full, we
can find Q2, Ql S Q2 < Q0 such that p(Q2) < O(Qz), and Ql c Q2 is a
right full map. We assume that this process does not finish and obtain a

contradiction. If it continues, we have an ascending chain:

ima < Ql c 92 c .... ¢ Q, where D(Qi+1) < p(Qi) .

99y

by 1.2, gQi = ?Q%, where each Q5 is f.g. projective. For some m,

is a countably generated submodule of Q, so it is projective and,

m
Q1.5j0 Q'; again, for some n, jng; c Qn cQ

m
and @®.Q' is a direct
2)9] 3819

n+l’
£ that h go')< ( ) ) i
summand o Qn+l' so at we have p§=l*j <p Qn+l < p(Qn . Since

Ql c Qn factors through j§lQ5’ it cannot be right full, but it is the
composite of the right full maps Qi c Qi+l' so that it is right full by
1.13. This contradiction shows that our process must end at a finite stage;
that is, Qm c Q@ is left full for some m. But P > Qm is the composite
of right full maps, and must be right full. So, we have a factorisation of
a : P+ Q as a right full followed by a left full map.

When every map factors as a right full then a left full map with
respect to a projective rank function, we shall say that the ring, R, has

enough right and left full maps with respect to the projective rank function.

We describe a factorisation of a map as a right full by a left full map as

a minimal factorisation.

Corollary 1.17 Let R be a two-sided Xo-hereditary ring with a faithful
projective rank function p. Then for any map between f.g. projectives

a:P+>9Q, pla) = minP' {p(P*) : ima ¢ P' ¢ Q}.

Proof: This follows at once from 1.16. For a = ala2,

2 is left full. By 1.12, pla) 2 p(al) + p(a2) - p(P"); so

where o : P > P' |is
right full and o
pla) = p(P").

There are occasions when this result is automatically true for a
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weakly semihereditary ring; for example, if we have the descending chain
condition on the numbers p(P). It fails in general for weakly semihereditary

rings.

The torsion modules for a projective rank function

We pass from the study of quite general maps in the category of
f.g. projectives to the study of the full maps with respect to a projective
rank function. We shall assume that the projective rank function is faithful
throughout this section. The sensible way to study the full maps with
respect to a faithful Sylvester projective rank function is to look at the
full subcategory of modules that are cokernels of full maps with respect to
the projective rank function; we shall call this the category of torsion left
modules with respect to the rank function. If coker o = coker B, Schanuel's

lemma shows that o and B are stably associated, that is, we have a

matrices of maps equation:
a0\ _[BoO
Y(01>"<01)6 '
p
where y and § are invertible maps.
Theorem 1.18 Let R be a semihereditary ring with a faithful projective
rank function p; then, T, the category of torsion modules with respect

to p, 1is an abelian category.

Proof: Let M and M_ be torsion modules with presentations:

a 1 2
i
P i :
0 ~> Qi -+ i > Mi + 0, where o, isa full map, and let & Ml > M2 be
some map.

We have a commutative diagram:

0>Q »P +M >0
o | o
0O > 2 -> P2 -> M2 > 0O

We have two presentations of im@:

09, im@' + Q, > im@ > 0O

o~ Qi > Pl +> im@ > O P
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where Pé = im@' + Q2 is finitely generated, so it is projective, and
Schanuel's lemma shows that Q2®Pl = Q]'_QP', so Q]'_ is also f.g. projec-

tive. Ql < Qi c Pl, and Q2 c P! ¢ P, so that p(Qi) > p(Ql), and

2 =72
o(Pé) 2 o(Q2); on putting this into Q2®Pl = Q]'_QPé, we see that equality
must hold; moreover, any f.g. module between Qi and Pl lies between Ql
and Pl and so has rank at least D(Qi) = p(Pl), so im@ is a torsion

module with respect to p. The kernel of ¢ |is Qi/Ql' and is also torsion,
whilst coker ¢ = P2/P' which is torsion. Finally, finite direct sums of
torsion modules are torsion, which completes the proof that T 1is an abelian
category.

Clearly, this result will have consequences for the factorisations

of full maps. In particular, we shall need the following lemma later on.
Lemma 1.19 Let R be a semihereditary ring with a faithful projective rank

function p. Let af = where a,B8 and Yy i=1+¢ton, are all

full maps with respect to p; then there exists an invertible map @ such

that

. full h th = .
where ai and Si are fu maps suc at “181 Yi

Proof: It is sufficient to prove this for n = 2 since the general case

Y o
follows by induction. So, consider aBf = 61 ¥ ; coker Y1 embeds in coker af

with quotient module isomorphic to coker y2; coker af maps onto coker a,

and the image of coker Yy in coker o is a torsion module of the form coker al,
where ay is a left factor of Yyr whilst the quotient of coker a by a

coker al is a torsion module of the form coker a2 where a2 is a left factor

of Yoi therefore, there is an invertible map @ such that

o 0 -1 Bl ¢}
ag = ; inspection shows that @ "B takes the form .
E1 %2 ey By

In certain cases, we can show that this category of torsion
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modules must be artinian and noetherian, which allows us to apply the Jordan-
Holder theorem in order to deduce the unique factorisation of maps into
atomic full maps. Our method of proving this is to show that the category is
noetherian in certain cases and then use a duality between the left torsion
and right torsion modules in order to prove that it is artinian too. This
duality occurs as a special case of a duality we find in a number of contexts,
in particular, in the representation theory of finite dimensional algebras,

so we shall develop it in some generality.

Let R be some ring, and let .B be the full subcategory of

1
f.p. modules of homological dimension 1, such that HomR(M,R) = 0; we call

these the left bound modules; similarly, we define the right bound modules,

that are the objects of the category 21' Our conditions simply mean that

if M 1is in 15 if and only if M is the cokernel of some map a : P =+ Q

such that o and o : QX + P* are injective; it is clear that this should

lead to a duality between .B and B. by sending coker a to coker aX.

1 1

Theorem 1.20 The categories B and B, are dual with respect to the

1— 1
functors Exté(_,R).

Proof: Let O =+ P g Q - M >0 be a presentation by f.g. projectives of an
element of lg; then, O -+ Q Qf P > Exté(M,R) -+ O, 1is a presentation of
Ext;(M,R), which we shall call the transpose of M, and write as TrM;
it is clear that TrM lies in Ei' and that
Tr (TxrM) = Ext;(TrM,R) = coker o = M.

Exté(_,R) is a contravariant functor of the first variable, so
B : M >N induces a map Tr f: TrN - TrM; we write this out explicitly in

order to show that the diagram below is commutative:

Tr (TrR)
Tr (T*M) —————— Tx (TrN)
I !
.,

M- N , where the vertical maps are simply
given by the isomorphisms coker (0®* ¢ coker a.
o
Let 0~ P -lQl->M->o, and o->P2°5a292->N->o be

presentations of M and N; then we have the commutative diagram below:

©

O ->P Q, - M->0
1 1
Voo, b 4B
0+P, #Q, +N=+0

2
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Dualising gives us:

09, + P)2<—>TrN—>O

Lo | L n

O—*Qi d Pl+TrM+O

which allows us to exhibit the map TrR : TrN - TrM. Dualising again gives,

XX
al
o=+ P - Ql » Tr(TrM) - O

l aéx l 1 TrTrR

0O-+P ES Q2 > Tr(TrN) » O .

The natural equivalence on the category of f.g. projectives
between the identity and the double dual induces a natural equivalence
between the identity and the double transpose on 19- and on Ei'

If R is a semihereditary ring and M is a f.g. module,
Hom(M,R) = O 1is equivalent to M's having no projective direct summand. If
R is a semihereditary ring with a faithful rank function p and M is the
cokernel of a full map with respect to p, then M lies in 15' since the
dual of a full map is a full map, and full maps must be injective. It is
clear that TrM is also the cokernel of a full map; consequently, Tr
restricts to a duality between the categories of left and right torsion
modules. In fact, it is clear that if we have a ring R with a faithful
Sylvester rank function, we may define the category of left and right torsion
modules and show that they are dual in the above way, since, under these
circumstances, all full maps are injective.

We wish to show that these categories of torsion modules with
respect to a projective rank function on a hereditary ring are both artinian
and noetherian, and it is clear from the duality that we have found that we
shall need to prove only one of these conditions, since the other is a direct
consequence. So we shall need a certain type of ascending chain conditions on

a ring.

Lemma 1.21 Let R be a left X -hereditary ring with a faithful projective

rank function p. Let P_c P

o CP,C..iue. ©Q be an ascending chain of

1 2 =
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f.g. submodules of the left projective module ¢Q such that Pi < Pi+l is

a full map with respect to p for all 1i; then the chain must stop after

finitely many steps.

Proof: Consider gPi which is countably generated and so projective. There-
i
fore, by 1.2, uP, = e Qj' where each Qj is f.g. projective.

i

m m
Eventually, P_.c @ Qj c P, for some m and n. ® Q. is a

°7 3= n =13
m
direct summand of yP,, and so, of P ; hence p( ® Q.) < p(P_) with
ii n . 3 n
j=1
m
equality only when -] Qj = P , since the rank function is faithful. However,
j=1

< Pn is a full map, and equality must hold. Since this is true for all
, for m' > n, the chain must stop.
If R 1is a ring with a faithful projective rank function p and
o : P>Q is a full map with respect to p, we define it to be an atomic

full map if, in any non-trivial factorisation,

v

’

p(P') > p(P) =p(Q) = pla).

We shall show that, over an X,-hereditary ring, any full map has
a finite factorisation as a product of atomic full maps, that any two such
factorisations have the same length, and the atomic full maps in one factorisa-
tion may be paired off with those in the other so that the corresponding maps
are stably associated, which, as we saw earlier, is the same as their co-

kernels being isomorphic.

Theorem 1.22 Let R be an X ~hereditary ring with a faithful projective
rank function p. The category of left or - right torsion modules with respect

to p 1is an artinian and noetherian abelian category.

Proof: By theorem 1.18, it is an abelian category and, by theorem 1.22, it
is a noetherian category; it is dual to the category of torsion modules on
the other side by 1.19 and the subsequence discussion, so it must be artinian

too.

Theorem 1.23 Let R be an X ~hereditary ring with a faithful projective
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rank function p. Then the atomic full maps with respect to p are exactly
the maps whose cokernels are simple objects in the category of torsion
modules. Consequently, every map has a factorisation into atoms; if
a = alaz ceas an, and a = 8162 ceee Bm, where ai, Bj are atoms, then
m = n, and there is a permutation in Sn such that ay is stably
associated to Bc(i)'
Proof: It is clear that only the cokernels of atoms can be simple in the
category of torsion modules with respect to p, and that the cokernels of
atoms are simple.

Every object in an artinian and noetherian abelian category has
a finite composition series consisting of simple modules, any two such series
have the same length and the simple modules may be paired off between the
two series so that two paired together are isomorphic: remembering that if
the full map ai has the same cokernel as Bj, that they must be stably
associated, and that a composition series for the cokernel of a full map in
the category of torsion modules corresponds to a factorisation of the map as
a product of simples, we deduce the theorem.

It follows at once from this that if o is an atomic full map,
then the ring of endomorphisms of coker a is a skew field, since it is a

simple object in an abelian category.
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2 THE COPRODUCT THEOREMS

The purpose of this chapter is to present statements of Bergman's
coproduct theorems (Bergman 74) and then to use these results as Bergman does
in (Bergman 74') to study a number of interesting ring constructions. Both
of these papers by Bergman are of great importance and this chapter is not
designed to obviate the need to read them, but rather to interest the reader
in their results and to make them plausible; however, we shall summarise all
that we need from them for the majority of this book. At the end of the
chapter, there is a discussion of the commutative analogues of some of the

constructions considered.

The basic coproduct thecrems

For ease of notation, we shall consider right modules in this
chapter. We begin by running through a number of definitions that we need in
order to state the coproduct theorems.

An R_~ri i i R ith ecified h hi £
ring 1is a ring with a specifi omomorphism from

Ro to R; it is a faithful R _-ring if this is an embedding. Given a family

of Ro—rings {RA= X €A}, there is a coproduct in the category of Ro—rings,

which we shall write as R = U RA’ and call the ring coproduct of the family
R

o
of rings {R X €A} amalgamating Ro. There is no reason to suppose in

A
the general case that this ring is not the trivial ring. We call Ro the

base ring of the coproduct and the rings RA are the factor rings of the

copreduct R. It is technically convenient to label A u {0} as M, and to
use p for a general element of M. Most of the time, we shall take Ro

to be a semisimple artinian ring, and each RA will be a faithful Ro -ring;

we shall see that under these conditions each R embeds in the coproduct

X
R.

Ideally, we should like to be able to reduce all problems about
the module theory of the coproduct to the module theory of the factor rings;

in the case where Ro is semisimple artinian and each RA is a faithful Ro
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ring we can go a long way towards doing this; in fact, most practical problems
about such coproducts may be solved although the proof is often rather
technical.

An induced module over the coproduct R is a module of the form

® Mu@R R where Mu is a right Ru module; an induced module of the form
n U

M R
OQRO or an R

A module of the form MOQRORA is called a basic module.

We say that a map of the form QauQR
u
map.

R: ®MB R+ &N & R is an induced
TR TR T TR -
There are certain induced modules which are clearly isomorphic

over R; let M =6 MuﬁR R be an induced module and suppose that for some
H H

A i i M =M ; =
1’ we have an isomorphism Al Mxle (MO QRORAl) then M N, where
~ ~ '
= = 2z : = :
N ﬁ Nu@RuR, where MA NA for X Al,kz le M Al and
N)\2 = sz ® (MOQROsz)' Such an isomorphism of induced modules is called a

basic transfer map; if R

transfer map.

There is one further type of isomorphism that we shall need to

o is a skew field it is usually called a free

consider, a particular sort of automorphism of an induced module. Let

M= MuQR R, and assume that for some My there is a linear functional
u u
e : Mu -> Ru . Extend e to a linear functional e : M - R by setting
1 1
e(Mu) =0 for u = v and then extending by linearity. Let a be in R,

and write la : R >R for left multiplication by a. Finally, for some Hys

let x be in Muz, and let y : R+M take 1 to x. Then, if by ® Moo

the composite elay has square O, and if u = we ensure this by

u
1 2
specifying that x should lie in the kernel of e. The map IM - elay is
invertible; we call such an automorphism a transvection.
We may now state the main theorems. We shall assume that RO is

a semisimple artinian ring, and that each R is a faithful Ro—ring, for

A
the rest of the chapter.

Theorem 2.1 Let R, be a semisimple artinian ring, and {Rk : Aed}, a
family of faithful Ro—rings. Let R=uUR ., If M=6 MuQR R 1is an induced
R H H
(o]

module, each Mu embeds in M, and M is isomorphic as an Ru-module to
a direct sum of Mu and a basic module.

So we can write Ru € R, and Mu c M.
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Theorem 2.2 Let RO be semisimple artinian, and {RA : A €A} a family of

faithful Ro-rings. Let R = ; RA' Then any R-submodule of an induced module
(6]

is isomorphic to an induced module.

Theorem 2.3 Let R =|§ RA’ where RO is semisimple artinian, and each R
[0}
is a faithful Ro-ring. et £ : M+ N be a surjection of induced modules;

then there is an isomorphism of induced modules g : M' = M, which is a
finite composition of basic transfers, and transvections such that the

composite gf : M' - N is an induced map.

These three theorems allow us to deduce all the rest of those
results that we shall prove in this chapter; however, in later work, we shall
need technical versions of these theorems, and in order to state these results,
we shall need to set up a certain amount of the machinery to prove the co-

product theorems. We shall do this under the assumption that RO is a skew

field, and indicate the modifications needed to deal with the general case.

o

RO module, and we can choose a basis for RA of the form {l}uT . write

T = gTA. For each NA in the induced module N = & NuQRuR we pick an R

basis, S . Write S =Us, If t isin T
Hu v u

We assume that R is a skew field; then each Ru is a free right

o

) we say that it is associated

to A; 1if s 1is in SA’ we say that it is associated to XA; if s 1is in

S we say that it is associated to no index. A monomial is a formal product

Ol
st .t ...t _...85€8, t, €T or else an element of S such that no two

172 n i 1 1
successive terms in the series s,tl,...tn, are associated to the same index.
Let U be the set of monomials; an element of U 1is associated to A, if
and only if its last factor is associated to A, Every element of U is

associated to some index except for those in SO. We denote by U those

NA’
elements of U that are not associated to A.

Theorem 2.4 (see theorem 2.1) Let RO be a skew field, and let

{RA : A € A} be a family of Ro-rings. let R = E Ry; then the induced module

o}
N=@o Num R, R has for a right Ro—basis the set U, defined in the foregoing
N

U u
material, For each A, N is the direct sum as right RA—module of NA and

a free right R,-module on the basis U_,.

Given X and ue€U,, we denote by S * N > Ry, the Ry-linear

right 'co-efficient of u' map given by the decomposition of N in the last
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theorem; for ue¢U, we denote by Cou : N > Ro, the Ro-linear 'right co-

efficient of u' map given by the decomposition of N as an Ro—module in the
last theorem. For Xle¢ A, the A-support of an element x in N relative to
the decomposition of N in the last theorem, is the set of elements

ue U~A such that cxu(x) is not ©O; x has empty A-support if and only if
it lies in N,. The O-support (or support) of an element consists of those

element u eUA such that c0u(x) is not oO.

The degree of a monomial stl...tn is defined to be (n+l), and
the degree of an element of S is 1; the degree of an element of N is the
maximum degree of a monomial in its support. We define an element x in N
to be A-pure, if all those monomials in its support of maximal degree are
associated to A. It is O-pure if it is not A-pure for any ).

Next, we well-order the sets S and T in some manner; this
induces a well-ordering on U, first by degree and then lexicographically,
reading from left to right.

The leading term of an element in N (with respect to the fixed
ordering) is the maximal element in its support. We call this the O-leading
term. If some element x is not A-pure, then some elements in its support
of maximal degree will not be associated to A; we define the A-leading

term of x to be the maximal element of this sort.

Theorem 2.5 (see theorem 2.2) Let Ro be a skew field and let R = W RA'
e R
o]
Let N be the induced module & NuQR R, and let S,T and U be defined
H u

as in the foregoing discussion. Let L be some R-submodule of N. Define
Lu to be the Ru—submodule of L, consisting of those elements whose u-
support does not contain the pu-leading term of some non-u-pure element of L.
Then L =6 L & R, in the natural way.
u KRy

We shall outline the adjustments needed to deal with the case
that Ro is a semisimple artinian ring. The first step is to use Morita
equivalence to pass from this case to the particular situation that Ro is
a direct sum of skew fields. This technique is of interest and use in its
own right.

Let Ro be a semisimple artinian, and let Sl' S2,...Sn be a
complete set of simple Ro modules such that Si = Sj i = j. The pro-
jective module P = ® si is a projective generator over Ro; so by Morita

i
equivalence the category of modules over R

5 is naturally equivalent to the
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category of modules over ﬁb = EndRo(P). Since each Si is simple and they

are mutually non-isomorphic ﬁo is the direct sum of the endomorphism rings

of Si’ and so, it is a direct sum of skew fields.

Let Rk be a faithful Ro-ring; then P QRORA is a projective

AI
equivalent to the category of modules over F&= End

generator over R is naturally

A

so that the category of modules over R
° (p QRORA)' and there
is a natural embedding of R_ in R,.

Rl
(0]

We give an example to clarify what is happening here. Let

RO = M2(k) xk; in this case R0 is simply kxk, Let Rl = M3(k), where
R is an Ro-ring via

T e
o o
[

+
[o I
o o
o o

Then, il = M2(k), and it is an ﬁo—ring via (a,b) ~» (é 0>
O b
Returning to the general case, we are given a family of faithful
Ro-rings, {Rx : Ae A} and we have associated to this a family of faithful

ﬁo—rings, {EA : AelA} . We wish to study the ring R = and, as

w R.;
R. A

(o]
before, we form the ﬁo—ring, R = EndR(P e R); it is clear that this is
(o]

simply the ring ;ORA.

Therefore, in order to study the category of R modules, we may
as well study the category of R modules, which is a coproduct over a direct
sum of skew fields. All the statements of the next two theorems are Morita
invariant and so they translate well.

So for the present, we assume that RO is a direct sum of skew

~ N i .
fields, R0 = 5 Ki’ Let {e1 : i=1-+n} be the complete set of ortho-
i=1l
gonal central idempotents. Any RO module has a decomposition as a direct
X n X X
sum of vector spaces over Kl, M= ¢ Mel; we choose a basis Bl for each
i=1

Me® as a vector space over Kl. We call the n-tuple of bases {Bl} a basis

for M over R_.

[¢] : A

1

(0]
If RX is an Ro—ring, it decomposes as a right Rx—module,
n
~ i i i i
Rk = ®e Rk; we write Rk = e RA' In turn, R decomposes as a right
i=1 : s s :
i~ B3 5 . . i3 i 3
R_-module as R = & Re”; again, we write - R = e Rxe , Wwe note that the

1
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usual formalism of matrix units works with respect to these superscripts. We
14 .
pick a basis for Ri AJ

ii i : . :
T u{e } for the remaining cases. We note that this gives us a basis for

J

as right K- module, tr for i # j, and

RA as Ro—module in the sense defined earlier.

Let {Nu : weM} be a family of Ru-modules. We choose an R -
basis for each N ,{S*}. Let S=uS" and T= u T, For each t in

TRt . H Aot
i i,u r1,] .
TA , 1 and j are respectively the right and the left index of t; )
is the A-index of t. A member of s* has the right index i, and if it
does not lie in NO' it has the natural A-index.

Let U be S and the set of formal products stl,...tn, where
s€Ss, t,l e T, where adjacent terms do not have the same J-index, but the
right index of any term is equal to the left index of the next term. The
right index or A-index of any such element is the right or A-index of its

i i
last term, So we may partition U = YU, where U is the set of elements
i

: i i i X
associated to 1i; we form the free K module N on U and consider

the R, module N =@ N .

o i
Let Uix be those elements of Ul not associated with . We
n _ii
may form the RA module Nxe(iglu K @RORA)'
n

Theorem 2.6 Let Ro be a direct sum of skew fields, i:lKi' Let {RA : Aed}
be a family of faithful Ro-rings, and let {Nu : ueM} be a collection of
R -modules, Then & N & R, where R = UR,, 1is isomorphic to N as defined

H uuRu Ro)\

above as Ro-module, and as RA

i i
module it is isomorphic to Nxe (8U'K QRORA)'
i
where U in this last representation is identified in N with the same sub-

set of U,

We note that for u eUi, uR is isomorphic to eiR via a map
sending u to ei. Consequently, the definition given in 2.6 allows us to
define co-ordinate functions cuu : N » Ru, which takes values in eiR,
where i 1is the right index of u.

As we did when Ro was simply a skew field, we well-order S
and T, and then well-order U length lexicographically. We define degree,
u-purity, the u-leading term and so on as we did previously. To recover a
version of coproduct theorem 2.5, we need one more concept, that of homo-
gegeity. Given an Ro module M, we define meM to be i-homogeneous if

1 : sE o ie io s :
me = m. An element is homogeneous if it is i~homogeneous for some 1i.
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n i

Theorem 2.7 Let Ro be a direct sum of skew fields x Kl; let

B— i=1

{RA : e A} Dbe a family of faithful Ro—rings, and let R = 3 Ry-
(6}

be the induced module & NUQR R, and let L be an R-submodule of N, Let
M u

L; be the Ro-submodule of L consisting of those i-homogeneous elements of

Let N

L, whose u-support does not contain the u-leading term of some homogeneous

n i
non-y-pure element of L; then & L: is an Ru submodule Lu of L, and
i=1
LE®LEL R.
v H Ry

In the more general case, where R is a semisimple artinian

(o}
ring, each R 1is a faithful R -ring, R =u R,, and N=@®& N® R with an
[¢] Rq A u MRy

R-submodule L, we pass by Morita equivalence denoted by bars to the case

described by the hypotheses of the last theorem. We then find distinguished

submodules fu such that L @ iuQR R; by Morita equivalence, we have sub-
¥ u

modules L such that L= @& L @ R.
H U R

U
We note a small corollary of 2.7, which will have some con-

sequence later.

Lemma 2.8 Let R = % RA' where Ro is semisimple artinian, and each R
(o]
is a faithful Ro-ring. Let L be an R-submodule of the induced module

A

@ NUQR R; then, in the decomposition of L given in 2.7, and the following
u H

discussion, L E @ L @, R, we find that LOoN cL .
[V ¥ u u u
Proof: By the process of Morita equivalence, it is enough to show this, when
Ro is a direct sum of skew fields, In this case, it is clear, for, if
1 eLl\Nu, 1e1 is i-homogeneous and has empty u-support so it satisfies the

conditions to be in Lu.

There is another result of this technical type that we shall need

later on.

Lemma 2.9 Let R =w R

Rg

module of an induced module N = @ N @ R; write L =60L @ R given by
u LT H Ry

G where Ro is a skew field. Let L be an R sub-

theorem 2.5, and assume that Lo is empty. Then if Enx eL for ny ENA’

each nk must be in L.
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N are non-zero; so znx

with respect to our well-ordered basis

Proof: We may assume that at least two of the n
is O-pure. Write the support of Enx
in descending order. Given two finite strings of basis elements in descending
order {ai} and {bi} we shall say that {bi} is less than {ai} if for
the first place at which they differ bi< a, or else {bi} is an initial
string of {ai}' We choose Enx in L so that nxe L and the associated
string of basis elements is minimal in the above sense. Enx is O-pure but
Enxé LO; so, it contains the leading term of some pure element which is
forced to take the fomm ni for some nie NA7 by subtracting an appropriate
multiple of n! from In we reduce the support and obtain a contradiction.

A A
It is clear that the information we have built up in the preceding
results allows us to answer a number of natural questions about ring co-
products, amalgamating a common semisimple artinian ring. We begin with a

few such applications.

where R is semisimple artinian and each RA

Theorem 2.10 Let R =uU R,,
—_—— Ro A 0

is a faithful Ro—ring. Then the homological (or weak) dimension of M B R
P\

over R is equal to the homological (or weak) dimension of M over R

Proof: Given a resolution P > M > O over RX’ Pe R+>M QR R~> 0 is a
= = "Ry 3

resolution of M QRAR over R, since by 2.1, R 1is flat over RX' Again,

by 2.1, this resolution of M QRAR considered over Ry contains P > M+ O

as a direct summand, so that the homological dimension of M cannot decrease
on passing to M 2 R.
A
From this, we are able to determine the global and weak dimen-

sions of a ring coproduct.

Theorem 2.11 Let R =u

3 RX’ where RO is semisimple artinian, and each
O

RX is a faithful Ro-ring; then the right global dimension of R 1is equal to

the supremum of the right global dimensions of the R provided that one

>‘I
of them is not O. If each RX is semisimple, however, the global dimension

may be O or 1. A similar result holds for weak dimension.

Proof: Consider any submodule of a free R module; by 2.2, it is an induced
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module. Moreover, by 2.1, if M £ @ MuQR R. each Mu is a submodule of a
u u
basic module, which are projective modules. From theorem 2.9, it follows that

the global dimension of R is the supremum of the global dimensions of the
Ru, provided that one of them is not semisimple artinian. If each of them
is semisimple artinian, it follows that the global dimension is at most 1.

Exactly the same proof holds for the weak dimension.

If R0 is a skew field, it is fairly clear that R cannot be
a semisimple artinian ring; however, this is most easily shown after we have
developed some more properties of the ring coproduct, so we shall deal with
this towards the end of the chapter. However, we present an example to show

that when RO is only semisimple artinian, the ring coproduct may be simple

artinian,
Let R0=k><k><k, R1=M2(k)xk, and R2=kxM2(k), where
R0 -+ R by (a,b,c) a o , and
O b), ¢

R0 - R2 by (a,b,c} b 0
a,\0 c

It is clear that R, u R, = M_(k}.
1R02 3
One can show by the same method that the coproduct of right semi-
hereditary rings is right semihereditary and a similar result holds for

Xo-hereditary.

Before passing from the study of the category of modules over the
coproduct to the more particular study of the category of f.g. projectives,
we leave as an exercise for the reader the details of the next example, which

answers a questlon of Bergman.

Example 2.12 We wish to find an extension of induced modules that is not

induced.

Consider the free ring R = k<x,y> = k[x]tik[y]. The module

R/xyR is an extension of the induced module R/yR by the induced module

R/%R, but it is not an induced module itself.

We start to look at the category of f.g. projectives over the
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ring coproduct. We already know all the objects of this category. We have

the next result.

Theorem 2.13 Let R =uU R
Ro

Rx is a faithful Ro-ring. Then, a projective module over R has the

® PuQR R, where each Pu is a projective module over Rh' The monoid of
H
isomorphism classes of f.g. projectives over R 1is isomorphic to the commu~

G where RO is semisimple artinian, and each

tative monoid coproduct of the monoids of isomorphism classes of f.g. pro-

jectives over R amalgamating the monoid of isomorphism classes of f.g.

A’
projectives over Ro. Consequently, KO(R) is the commutative group co-

product of KO(R amalgamating KO(RO)'

A)I
Proof: Every projective module lies in a free module and so must be iso-
morphic to an induced module by theorem 2.2, By theorem 2.9, we know that if
P=eMe@ R, each M must be a projective R  module.
poH Ty H H

Theorem 2.3 tells us that any isomorphism between two f.g. induced
modules is the composite of a finite sequence of basic transfers and trans-
vections followed by an induced map which, over R, is an isomorphism and
so must have been an isomorphism on each summand. Transvections do not alter
the form of an induced module; basic transfers simply amount to the amalgama-

tion of the images of Pe(Ro) in the different PO(R which proves the

A)’
result for the monoids of f.g. projectives. The result for KO follows

since KO is the universal abelian group functor applied to PQ.

We should also like to have information on the maps between f.g.
projectives; that is, we should like to be able to explain all isomorphisms
and all zero-divisors over the coproduct in terms of the factor rings. We
already know how to explain all isomorphisms since 2.3 explains all surjec-

tions, so we look at the zero-divisors next.

Theorem 2.14 Let R = u R, where RO is a semisimple artinian ring and
R
(o]
each RA is a faithful Ro-ring. Let a : P>P', and B : P' > P" be maps
between f.g. projectives over R such that af = O, Then there exists a

commutative diagram:
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a B
P ;P' Pll
n vl
®a @R 8 2 R
®P e R L R Lo ®P @ R
n MRy T T o HRy

where each direct sum in this diagram is a finite direct sum of f.g. pro-

jectives and auBu = 0, for all u.

Proof: First, imB is an induced module by 2.2; so P' + imB 1is a sur-

jection of induced modules, and by 2.3, there exists a commutative diagram:

a B
P PI Pll
. I ul
®kerR @ R——»® P' @ R img & R = im
@ Bu R Bu R, B

So the problem is to replace kerBu, and imBu by suitable f.g
projectives. imoa' is a f.g. submodule of ® kerB ® R and so lies in an R-
N
submodule generated by finitely many elements from kerBu. Thus, there is

an induced map from ® P QR R to ® kerB 2 R, where each P is a finitely
u u n u H u

generated free Ru—module, such that the image of this induced map contains
the image of a'. Since P 1is a projective module, we have a commutative

diagram:

p* P"

n Ul

-+ ————————— Iy

e P R———>» & P’
2 PuQR

R————»imB ®&_ R
u HRy n W Ry

=

in

We miss out the bottom right hand corner of this diagram
(® imBuQR R); dualise the rest of the diagram and then fill in the bottom
H H

left hand corner of this diagram as we did in order to replace @ kerBuQR R.
H H

The diagram we obtain is the dual of a diagram that suits our needs.

Universal ring constructions

These results on the coproduct construction allow us to study a
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number of interesting constructions on the category of f.g. projectives over

a ring. Given a k-algebra, S, the ring coproduct SLik[xj may be regarded

as the S-ring with a universal map on the free module of rank 1 that
centralises the k-algebra structure. Suppose that Pl and P2 are f.g.
projectives over the ring S; we are also interested in finding and studying
an S-ring, T, with a universal map from PleT to PZQST that centralises
the k-structure. In the language of functors, we are trying to find the S-
ring in the category of k-algebras that represents the functor

S' » Homs,(Ples', Pzﬁss'). We say that an object O in the category C
represents a covariant functor F : C + Sets if F( ) 1is naturally equiva-
lent to Homc(g, ). We should like to investigate other universal construc-
tions; thus, we wish to find an S-ring, Tl’ in the category of k-algebras

with a universal isomorphism between P and P, T . That is, T

1271 281 1
represents the functor that associates to each S-ring that is a k-algebra

the set of isomorphisms between P QSS' and P_®_S'. Again, we should like

1 2°s
to find an S-ring, T2, that is a k-algebra with a universal idempotent map

on the projective PQST that is, T represent the functor on the category

H
of S-rings that are k—aiqebras, which zssociates to each object S' the set
of idempotent maps on Pﬁss'.

It is quite easy to see that there are rings with these universal
properties, essentially by generator and relation constructions. First, we
note that if A is an additive category such that every object is a direct
summand of Fn for some object F in the category, then this category is
a full subcategory of the category of f.g. projectives over the endomorphism
ring of F; F becomes the free module of rank 1. So, if we start off with
a ring R, and adjoin some set of maps to the category of f.g. projectives
over R subject to some set of relations, and construct the additive cate-
gory that they generate, the objects are still all direct summands of Rp
for suitable n, and therefore, the category is a full subcategory of the
category of f.g. projectives over the endomorphism ring of the object Rl.
Clearly, there is a homomorphism from R to this endomorphism ring E, which
makes E into the universal R-ring having this additional set of maps satisfy-
ing the specified set of relations. Clearly, the constructions in the preced-
ing paragraph all have this form, and we shall discuss in chapter 4 another
construction which may also be shown to exist by this method. For our purposes
in this chapter it is more useful to study them in a different way.

One construction of a slightly different nature that we wish to

study is the formation of the universal k-algebra T' with a universal homo-
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morphism from S to Mn(T'). Here, T' represents the functor on the

category of k-algebras, Homk_alg(S,Mn( )).

The constructions on the category of f.g. projectives are all
approached in a similar way. We shall explain the case of adjoining a uni-
versal map between two projectives in some detail, and since the other cases
use similar arguments, we shall consider them more briefly.

Let @ : R+ S be a homomorphism between k-algebras, and let
Ql and 92 be f.g. projectives; then, if R' is the universal R-ring, and

k-algebra, with a universal map from Ql to QZ’ it is clear that R' S
R
is the universal S-ring and k-algebra, with a universal map from QlQRS to
0,88
For suitably large n, there are orthogonal idempotents, e
e2 in Mn(s), such that ei(ns) = Pi; under the Morita equivalence of S

and Mn(S), ei(ns) becomes e,M (S), so it is enough to show that there
n

i
is an Mn(s)—ring with a universal map from ean(S') to ezMn(S') for an
S-ring, S', that is a k-algebra. Let ey be that idempotent such that
e + e, + ey = 1 in Mn(S); we have a map kxkxk - Mn(s) given by
(a,b,c) =+ ela + e2b + e3c, which makes Mn(s) into a faithful kxkxk-

ring. The projective module induced by the first summand of k xkxk is
ean(S) and that induced by the second summand is eZMn(S)° It is easily
seen that the k xk-ring with a universal map from kxO0 to Oxk 1is the
X i) y where k xk embeds along the
induced the universal map. Therefore, the ring coproduct,

lower triangular matrix ring Tz(k) =<

diagonal, and e2l

Tz(k) x k u M (S) is the universal M _(S)-ring that is a k-algebra with
kxkxk ™ n

a map from ean(S) to ezMn(S). By Morita equivalence, we have a universal

S-ring with a universal map from Pl to P2. We shall use the symbol

T = Sk<a:Pl > P2> for this construction. We notice that it is made for

studying in terms of the ring coproduct.

Theorem 2.15 Let S be a k-algebra and let Pl and P2 be f.g. projectives

over S. Let T = Sk<a:Pl -> P2> be the k-algebra and S~ring with a universal

map from PlQST to PZQST; then T has the same global or weak dimension
as S except when the global or weak dimension of S is ©O; in this case,
T has dimension 1. All f.g. projectives are induced from S; in fact,

the ring homomorphism from S to T induces an isomorphism Ps(S) = P$(T)°
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Proof: We retain the notation of the preceding discussion.

We see that M _(T) = M_(S) u T, (k) xk; T,(k) has global
n n 2 2
k xkxk
and weak dimension 1, so that Mn(T) has global or weak dimension equal to

that of S except when S has dimension O, in which case, T has dimen-
sion 1 by 2.10. The monoid of isomorphism classes of f.g. projectives

over T2(k) xk 1is isomorphic to the monoid of isomorphism classes of f.g.
projectives over kxkxk, simply by the map induced by the ring homomorphism

(k) xk)

113

described earlier; so, from 2.12, we deduce that Pe(Mn(S) u T

kxkxk 2

Pe(Mn(s)’ from which it follows by Morita equivalence, that Ps(T) = PQ(S).

The k xk-ring with a universal isomorphism between k xXO and
Oxk, 1is Mz(k), where k xk embeds as the diagonal matrices; the elements

e and are the universal map and its inverse. Therefore, if e and

21 €12 1

n
e, are orthogonal idempotents in Mn(s) such that e, S = Pi' the Mn(s)—

ring with a universal isomorphism between e Mn(S) and e Mn(S) is just

1 2
M (S) w© Mz(k) Xk, where themap kxkxk to M (S) is
o kxkxk n
(a,b,c) »> ael + be2 + ce3, where e3 is 1 - el - e2, and kxkxk to
Mz(k)x k 1is given by (a,b,c) 4«? O> , c) . By Morita equivalence, we
O b

have an S-ring, T, which has a universal isomorphism between PIQST and

PZQST, by taking the centraliser of the copy of Mn(k) in the first factor

of this coproduct. We shall use the symbol sk <u,u-1:Pl - P2> for this ring.

Theorem 2.16 Let S be a k-algebra and let Pl and P2 be f.g. projectives

over S. Then T = sk <u,u—1:Pl > P2> has the same global or weak dimension
as S except when S has global or weak dimension O. Here T may have
dimension O or 1. Ps(T) is isomorphic to the quotient of PQ(S) by the

i 4 = .
relation [ 1] [P2]
Proof: We use the notation of the preceding discussion.

~ -1 ~
Mn(T) = Mn(sk<mu P, > P2>) = Mz(k) xk U Mn(S) .

L kxk xk

The global or weak dimension of Mn(T) must equal that of Mn(s)
if this not equal to O, by 2.10. If it equals O, however, it can be at
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most 1; we see that it may be 1 by adjoining a universal isomorphism between
kl and kl over k, obtaining the Laurent polynomial ring k[t,t_l]. on the
other hand, it may be O, as we find for the ring k XM2(k), where we
adjoin a universal isomorphism between k xO and O XellM2(k), obtaining
M3(k).

For the last statement of the theorem, we note that PQ(M2(k) x k)
is the quotient of Pa(k xk xk) by the relation [kx0x0] = [0Oxkx0O];
since PQ(Mn(T)) is the commutative monoid coproduct of PQ(M2(k) xk) and
PG(Mn(S)) amalgamating Pe(k xk xk), we find that the result holds for
PQ(Mn(T))’ when we adjoin universal isomorphisms between ean(S) and
e2Mn(S). The result holds for PQ(T) by Morita equivalence.

Next, we deal with the adjunction of a universal idempotent map
on a f.g, projective P. If we adjoin a universal idempotent map to the
free module of rank 1, over the field Xk, we obtain the ring k xk. There-
fore, if the idempotent e in Mn(S) satisfies e'S & P, the S-ring tgat
is a k-algebra with a universal idempotent map on P, Sk<e:P +P, e =¢e >
is obtained by taking the centraliser of the matrix units in the ring co-
product Mn(S) k';kk xk xk, where kxk maps to Mn(S) by
(a,b) > ae + b(l-e), and kxk embeds in kxkxk by (a,b) » (a,a,b).

Once again, we may deduce homological information:

Theorem 2.17 The global or weak dimension of T = S <e:P - P, e = e2> is

k
equal to that of S except, possibly, when the dimension of S 1is O,

where T may have dimensions O or 1, PQ(S) embeds in PQ(T), and there
are two more generators [Ql], and [Q2] subject to the relation

[Ql] + [92] = [PQST].

Proof: This may be left to the reader since it in no way differs from that

of the last two theorems.

It is clear that these constructions may be put together in a
number of interesting ways. One construction of some interest is the adjunc-
tion to k to a pair of matrices myn and 5" such that aB = Im. We
call this ring, R. This may be obtained by adjoining universal an idempotent
n by n matrix, E, to k and then adjoining to this ring a universal
isomorphism between the image of E and the free module of rank m. We are

able to deduce that this is a hereditary ring and that it has exactly one
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\ , . \ ma~ _n .
new indecomposable projective, Q, up to isomorphism, and Q & R = R is

the only relation that it satisfies.

Our final construction is a k~algebra that represents the functor
Homk_alg(S,Mn( )); following Bergman, we call this ring k<S > Mn>.
Theorem 2.18 Consider the ring T which is the centraliser of the first
factor in the ring coproduct Mn(k)LJS. Then k<S ~> M > T,
k

Proof: Given a homomorphism @ : T -+ A, we have homomorphisms
s > M (k) #SEM(T)-*M(A)
n n n

which determines a homomorphism ¢1 : S > Mn(A). Conversely, if we have a
map g : S > Mn(A), we have a map g' : Mn(k) fs - Mn(A) that sends

Mn(k) to Mn(k) centralising & in Mn(A) and acts as g on S. Restrict-
ing to the centraliser of the matrix units determines amap g : T = A.

These processes are mutually inverse, so they demonstrate the natural equi-

valence of Hom g(T, ) and the functor Hom (S,Mn( ).

k-al k-alg

Before we describe the homological properties of this construction,

we consider some of its interesting ring~theoretic properties,
Theorem 2,19 k<S » Mn> is a domain, and the group of units is just k>,

Proof: If a,b are in k<S > Mn> and ab = 0, we may regard a and b as

endomorphisms of the induced projective module, P QM (k)(Mn(k) u S), over the
n
k

ring Mn(k)LJS, where P 1is the simple module over Mn(k). We write
k

R = Mn(k)nJS in the following.
k

By 2.14, we have a commutative diagram:

b a
PRy )R PRy R Py (R
n n n
‘ P
B&R Q8RR

QlﬁMn(k)R P“Mn(k)R ' Qz“mﬂ(k)R '
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where B,0 are defined over Mn(k) and compose to zero.

We know that the middle term of the bottom row is PQM (k)R'
n

since this is the only representation of it as an induced module.

However, the only way that a pair of maps over Mn(k), B:Ql -+ P,
and then o:P - Q2 can compose to zerc for one of the maps to be zero itself,
which, in turn, implies that one of a and b are O.

The result on units is a consequence of 2.3. If we have a unit

in k<SS » Mn>, it defines an automorphism of P® all basic transfers

M (k)R;

R.
M (k)
R over R mustnbe the group of auto-

and transvections must be the identity map on Pg so, by 2.3, the

group of automorphisms of PQM x)
morphisms of P over Mn(k), Ryhich is simply kx.

It is clear that the same argument shows that if
Mn(T) = Mn(D)B R, where R 1is a D-ring, D 1is a skew field, and the iso-
morphism sends the obvious set of matrices to the obvious set of matrices,

X
then T is a domain and the group of units of T is just D .

This argument allows us to determine the global dimension of a

ring coproduct over a skew field.

where each R, is

Theorem 2.20 Let Ro be a skew field and let R = U RA' N

RO
an Ro—ring; then, the global of R equals the supremum of the global

dimensions of R except when they are all zero; then it becomes 1.

Proof: By 2.10, we have this result except possibly when the rings are all
semi-simple. Consider the ring of endomorphisms of an induced projective

module PQR R, where P is a simple module for the semisimple ring RA'
A

The group of units is simply the group of automorphisms of the module and

by the same argument as in the last theorem we see that this is just the

group of automorphisms of P over RA' However, the ring of endomorphisms

of PQR R 1is larger than the ring of endomorphisms of P over R so

A'
that this ring of endomorphisms is not a skew field. Therefore, R cannot
be a semisimple artinian ring since over a semisimple artinian ring, an
indecomposable projective module is simple, and so its ring of endomorphisms
must be a skew field.

We see that the global dimension of k<S -+ Mn> is equal to that
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of S by 2.10, except when S 1is semisimple artinian in which case we may

apply 2.20 to show that it is equal to 1.

It is interesting to examine some of these constructions in the
category of commutative algebras. We shall not provide detailed proofs since
this last part is meant to be only illustrative.

We begin with a commutative ring C and a couple of f.g.

projectives Pl and P2 over C. We wish to find a commutative C-algebra

Cla:P, » P2] that represents the functor on the category of C-algebras

1

A > HomA_mod(PlQCA,PzﬁcA). The functor HomA(PlQCA,PzﬁcA) is naturally

equivalent to the functor HomA((PlQCP;)QCA,A), where P; is the dual of
P2; but it is clear that the C-algebra representing this functor is just
the symmetric algebra on the module PlQCP2 over C. It is an immediate
consequence that this algebra is geometrically regular over C; that is,

for each prime ideal p of C,Cla:P, + Pz]QCQ(C/p) is a regular ring where

EREVED is the algebraic closure of the ring of quotients of C/p.

We shall find that this holds for each construction examined and
we shall be able to obtain each construction in a sufficiently explicit form
to be able to determine the dimension of each geometric fibre over C. For
example, in the above example, the fibre over the prime p is
Q(C/p)[xij:i =1 > m j =1 mz], where m, is the local rank of Pi at
p.

We examine next the construction of adjoining a universal iso-
morphism from P, to P,. This is only possible when the local rank of P is

1 2 1

the same as that of P2. If such is the case, Pl becomes isomorphic to P

on a Zariski cover and by further refinement we see that there is a Zariski

2

cover which is the union of finitely many open and closed subspaces such that
the restriction of Pl to each of these subsets is isomorphic to the restric-
tion of P2 and both are isomorphic to free modules on each subspace. If on
a particular subspace the restrictions have local rank n, then the space of
all isomerphisms is a principal homogeneous space for GLn' Therefore, we see
that the fibre at a prime of C of the spectrum of the ring representing the
space of isomorphisms of Pl with P2 is just GLn(Q(C/p)), where n |is
the local rank of Pi.

If we wish to adjoin an idempotent map e:P + P to C, it is
reasonable to specify the local rank of the idempotent also, which must be

constant on connected components and dominated by that of P. We may as well
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restrict to a situation where the local rank of P 1is constant and so is
that of the idempotent at n and m respectively. So we wish to represent
idempotents of rank m in EndA(PQcA). Over C, there is a Zariski cover
on which P Dbecomes free of rank n. In a particular algebra, any two idem-
potents of rank m in Mn(A) present free modules with free complement on
a suitable Zariski cover, so that with respect to the Zariski topology all
these elements are conjugate. Moreover, the centraliser of an idempotent
whose image is free of rank m and whose complement is free of rank (n-m)
is just Mm(A) XMn_m(A); the consequence of this is that the set of idem-
potents of rank m in EndA(PQCA) becomes on a 2ariski cover the functor
GLn/GLm xGLn_m. Since this last functor is geometrically regular, so is the
one we are interested in, and it is easy to check that the dimension of a

fibre is 2mn.
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3 PROJECTIVE RANK FUNCTIONS ON RING COPRODUCTS

The purpose of this chapter is to investigate how projective rank
functions behave under the coproduct construction. On the way we shall give
an application of this theory to the problem of accessibility for f.g. groups.
Also, we shall prove some interesting results on the behaviour of the number
of generators of an induced module over a coproduct. The main applications of
the results of this chapter will be to hereditary rings in the following

chapters.

The Generating Number on Ring Coproducts

When investigating partial projective rank functions on a ring
coproduct, R = Rl EBRZ' where RO is a semisimple artinian ring and Ri
is a faithful Ro-ring, it is sensible to assume that it is defined on the

image of KO(RO) in KO(R). In this situation, we have the following lemma:

Lemma 3.1 The partial projective rank functions on a ring coproduct

R = Rl [ R2 where RO is a semisimple artinian ring and Ri is a faithful

Ro

Ro—ring, that are defined on the image of KO(RO) in KO(R) are given by

pairs of partial projective rank functions (pl,pz) where p is a partial

i
projective rank function on Ri defined on the image of KO(RO) such that

they induce the same projective rank function on RO.

Proof: This is clear since by 2.12, we have a push-out diagram:

KO(RO) > Kol(Rl)
Ky(Ry) > K, (R)

We shall usually describe a partial projective rank function of
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this type by the pair (pl,pz) of partial projective rank functions where
p, 1is defined on R,.
i i
We wish to show that the inner projective rank of a map

a:P > QO defined over R with respect to a rank function p 1is just the

1

same as the inner rank of o®_ R:P& R > QO®R.R over R =R, U R with
(o]

respect to the projective rank function (pl,pz). In order to do this, we
need to investigate how the generating number with respect to a rank function
behaves under the coproduct. Before we do this we present a result that is
independent of rank functions.

In chapter 1, we have already encountered the notion of a ring

with unbounded generating number; that is, there can be no equation of the
m ~ m+l

form Rl = Rl ® P. If however such an equation holds, a similar equa-

tion holds for all Rl-rinqs, and in particular for a ring coproduct,

R = Rl u R2. So the number of generators of a module induced from R2 may
Ro

well change. We show that this is the only way that things can go wrong.

Theorem 3.2 Suppose that Ro is a skew field, and R2 has unbounded

generating number, where Rl and R2 are Ro-rinqs. Then the minimal number

of generators over R of the f.g. module M 1is equal to the minimal

1
number of generators of the module MQR R over R.
1

Proof: Suppose that MQR R may be generated by m elements over R; then
1
there is a surjection of induced modules a:leﬁR R > MQRlR. By 2.3, there
1
m.
. . . N R . . L _
is an isomorphism B.PlQRlR -] PzﬁRlR -> 1QRlR , Wwhich is a finite composi

tion of free transfers and transvections such that the composite affi is an
induced map; that is, it maps Pl onto M and P2 to O. We shall show

that Pl is an m-generator module and so is M.

We recall from theorem 1.4 that if R2 has unbounded generating

number, we have a well-defined partial rank function on stably free R,-

) 2

modules. Since any stably free module has non-negative rank, the rank of a
free summand of a stably free module P is bounded by the rank pz(P).
If after a series of free transfers and transvections we have

passed from leQR R to PlQRlR ® P QRlR, we shall see that
1

2

Pl ® p2(PZ)Rl = le. We assume that this is true at the nth stage; if our
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next step is a transvection, it alters nothing; if it is a free transfer
from Pl to P2 it is still true; if it is a free transfer from P2 to
Pl we can transfer at most 92(P2) factors, so it is still true. It is
true at the beginning so by induction it is true at the end.

We have shown the hard direction of our theorem; the other is

trivial.

We pass to the more technical versions we need for partial pro-

jective rank functions in general.

Theorem 3.3 Let R =R, u R_,
_— 1 Rq 2

where R is a semisimple artinian ring and

each Ri is a faithful Ro-ring; let pl,p2 be partial projective rank

functions for R, and R, respectively, defined and agreeing on KO(RO)

1 2
in Ko(Ri). Let Ml and M, be f.g. Rl and R2 modules respectively
with generating numbers ml and m, respectively with respect to ChY and
. . ® .
02 Then the generating number of MlQRlR MzﬁRlR with respect to (pl,pz)
is ml + m, .

Proof: Certainly, it is at most ml + My
Conversely, suppose that we have a surjection over R,

(PlQRlR) -] (PZQRZR) > (MlQRlR) ® (M2QR2R), where pz(Pi) is defined. By

2.3, after a series of basic transfers and transvections on PlQRlR ® PZQRZR,

we obtain an induced surjection:

P'®@_ R O®P'®, R>M
Ry Ry

1 2 1

2, RO M
Rl 2

2 R
Ry
. i . . .

Since Py 1s defined on the image of KO(RO) in KO(Ri) and
agree there, the basic transfers produce modules on which 0y is defined.
-, R

Ry

1

Since P; maps onto M,, p.{(P!) 2m,, so the rank of P& R &P
i i i1 i 1 2

with respect to (pl,pz) must be at least ml + m2.

At this point, it is of some interest to show how this theory
may be applied to provide a fairly simple proof of a result of {(Linnell 83)
on accessibility for f.g. groups.

We begin with a summary of the background to the problem, and
refer the reader to (Dicks 80) for the details of the subject.

Let X be a finite connected graph with edge set E and vertex
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set V; we allow the beginning Te and end e of an edge to be the same
vertex. We label the edges and vertices of X with groups, and for each

edge e we have embeddings G - GTe and Ge + G if rte = 1e, these

of
embeddings may well be different. This is known as ; graph of groups; we
associate to this a group, the fundamental group of a graph of groups in
the following way.

Let T be a maximal subtree of X, which we regard as a subtree
of groups by the appropriate labelling of the elements of T; let v be a
vertex of T with only one edge, e, incident with it, so v = te, without
loss of generality. We pass to the tree with one fewer vertex, T', obtained
by omitting e and Te, which we label by the same groups as before except
for the vertex, e, which we label with the group coproduct of GT and

e

i * . i i i e
Gle amalgamating Ge’ GTe GeGle By induction, we eventually reach a singl
point with a group GT associated to it, with a specified homomorphism

G -+ G for each vertex v such that G nG =G for each edge e in
v T Te 1e e
T; clearly, GT is universal with respect to this property.

For each edge e in X - T, we have two embeddings of Ge in

Ge > G're-C-G and Ge -+ G e-C-G so we form the multiple HNN extension

G T T
of GT over all edges of X - T with respect to these pairs of embeddings.
The resulting group, GX’ is the fundamental group of our graph of groups;

it can be shown that it is independent of the maximal subtree chosen. Also,

if X' 1is a full connected subgraph of X, we may express Gx as the
fundamental group of a graph of groups on X, where X is the graph obtained
from X by shrinking X' to a point. The groups associated to the elements
of X are the same as those in X for those that are not affected and that

associated to the point to which we shrunk X' 1is the group Gx

In the following, we shall assume that edges groups are finite,
and also that if there is an edge e such that G_ =G or G =G, ,
e Te e 1e
then T1e = 1e.
Given a f.g. group, G, we are interested in the various ways
of expressing G as the fundamental group of a graph of groups with finite
edge groups. It is possible to show that if G 1is the fundamental group of

a graph of groups on Xl and X then these two representations have a

’
common refinement, that is, theri is a representation of G as the funda-
mental group of a graph of groups on a graph X such that the two preceding
representations arise by collapsing suitable subgraphs of X to points. So
the question arises whether there is a representation from which all others

arise by collapsing suitable subgraphs. If there is, the group is said to be
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accessible. This is equivalent to finding a representation where all the
vertex groups are neither HNN extensions over some finite group nor non-
trivial coproducts over some finite group. Since it is also easy to see that
the number of generators of the fundamental group of a graph of groups on a
graph X 1is at least E(X) - V(X) + 1 (consider the homomorphism to the
fundamental graph of groups on the graph X where all vertex groups and
edge groups are trivial, which is the free group on the stated number of
generators), we know that if the vertex groups keep on decomposing they
must eventually decompose only as coproducts over finite groups, so that we
shall only consider this possibility. It is clear that this cannot happen for
f.g. torsion-free groups since the number of generators of Hl*H is the

2
sum of the number of generators of H and H, by the Grushko-Neumann

2
theorem. In order to prove a more geniral theorem we need to find a substitute
for the number of generators that grows in a satisfactory way for the co-
product with amalgamation over a finite group. Linnell (83) was able to do
this for those groups whose subgroups are of bounded order; we shall present

his theorem, using partial rank functions instead of the analysis he used.

We noted in the first chapter, that on every group ring in
characteristic O there is a faithful projective rank function on f.g. pro-
jectives induced by the trace function. We are interested in the subgroup
Kg(KG) of KO(KG) which is generated by the f.g. projectives induced up
from the subgroups of finite order, where K 1is a field of characteristic O.
We shall denote by pf the partial projective rank function induced by the

trace on K(f)(KG). If G=G, * Gy then XG = K6, u kG
Go KGq

2; if F 1is a

finite group, then KF 1is semisimple artinian and we should like to show
that pf is just the partial projective rank function (pf,pg).

Lemma 3.4 Let G =G where F 1is a finite group; then Kg(KG) is

*
1F %
just the subgroup of Kg(KG) generated by the images of KS(KGi). Con-

f £
sequently, pf is the partial projective rank function (pl,pz).

Proof: If P is a f.g. projective induced up from some finite subgroup H
of G, we know that H 1is a conjugate of some subgroup H' of either Gl
or G2; consequently, P 1is isomorphic to a projective induced from H' and

must lie in the image of Kg(KGl) or Kg(KGz). So Kg(KG) is generated by
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i f f
the images of KO(KGl) and KO(KG2).

pi and pg agree on the image of KO(KF), lemma 3.1
shows that our last statement is true.

Since

This result allows us to show Linnell's theorem; we shall use
the generating number with respect to p of the augmentation ideal of G

in KG to measure the size of G.

Theorem 3.5 Let G be a f.g. group such that the number of elements in

finite subgroups of G is bounded; then G is accessible.

Proof: We recall that it is sufficient to show that we cannot keep on decom-
posing such groups as a group coproduct amalgamating a finite subgroup in a
non-trivial way.

If GG, *G

17 Gy where |F| < o, we know that

wG = (wGl)G ® (wG2/wFG2)G ,

where wH 1is the augmentation ideal of a group H in KH.

KG = KGl ??KG2 and it is clear from the above equation that G

is an induced module. By 3.3 and 3.4, we see that
f _ £ f
g.p (wG) = g.pl(wGl) + g.p2(wG2/wFG2),

and it is clear that if m is the bound on the order on finite subgroups of

£
G, then g.p2(wG2/wFG2) p-3 % .

Consequently, if g.pf(wG) = ¢, there is no decomposition of G
as the vertex group of a tree of groups with finite edge groups having more

than (miq) vertices, which proves Linnell's theorem.

Sylvester projective rank functions on ring coproducts

We return to the general theory. Consider a ring homomorphism
% : R+ S; suppose that we have a projective rank function on S, Py in

inducing a projective rank function P On R. We say that the map @ is

honest with respect to the projective rank functions p and Pg if for any

R

map o : P+ Q in the category of f.g. projectives over R, pR(u) = ps(uQRS).
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This clearly reduces to the usual notion of honesty for firs (Cohn 71,
p.264).

Theorem 3.6 Let R = Rl 5 R2, where RO is a semisimple artinian ring
(o]

and each Ri is a faithful Ro-ring. Let Py be projective rank functions
on Ri that induce the same projective rank function on RO. Let

p = (pl,p2) be the projective rank function they define on R. Then the
embedding Rl -+~ R 1is honest with respect to pl and p.

Proof: Let o : P+ Q be a map between f.g. projectives over R It is

1
clear that p. {(a) 2 p(aR, R).
1 Rl

So let M be a f.g. R-module such that u(P)QRlR c Mg Q@RlR.

By 1.10, we need to show that g.p(M) 2 pl(u).
By 2.8, the decomposition of M given by 2.7 has the form

M= (MOQROR) ® (MlQRlR) ® (M2QR2R),

where a(P) ¢ M By 3.3, the generating number of M with respect to o

| .

is at least the generating number of M, with respect to P1e

1
By 2.1, the embedding of Rl—modules Q< QQRlR splits; so consider

the image of M., M', in Q wunder the splitting map. It contains the image

1
of P under «, so its generating number with respect to Pl is at least
pl(u). We have shown g.p(M) 2 g.pl(Ml) 2 g.pl(M') 2 pl(a), S0

p(aQRlR) = pl(u), as we wished to show.

This result will be of great use to us later; for the present,

we give a couple of interesting consequences.

Theorem 3.7 Let R = R. v R2, where R is semisimple artinian, and each

1 Ry o
Ri is a faithful Ro—ring. Let p = (pl,p2) be a projective rank function
on R. Then p 1is a Sylvester projective rank function if and only if each
oy is a Sylvester projective rank function.
Proof: Suppose that oy is a Sylvester projective rank function on Ri.
Consider a couple of maps & : P > P', and B : P' + P" defined over R

such that of = O, Then by 2.13, we have a commutative diagram:
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P a P' S PII
R
op up R ifR _eprgy R _Bi®R _eprer
ithi i 10 i Ri

where ai,Si are maps defined over Ri such that uiBi = 0.

By the law of nullity, pi(ai) + pi(si) < pi(P'); summing, we

find that p(a) + p(B) < §Di(ai) + Di(Bi) < p(P'), so that p is a Sylvester
projective rank function too.

Conversely, suppose that p 1is a Sylvester projective rank
function, and let o : P> P', and B : P' + P" be maps between f.g. pro-
jectives over Rl such that af = O. Since p 1is a Sylvester projective

rank function, D(aQRlR) + p(SQRlR) < p(P'QRlR); but, by the last theorem,

D(a@RlR) = p.(a) for any maps defined over R.. So the projective rank

1 1

function is Sylvester.

P1

Theorem 3.8 If R = Rl o R2, where Ro is a skew field, then R 1is a
(0]

Sylvester domain if and only if Rl and R2 are Sylvester domains.
Proof: This is an immediate consequence of the last theorem when we notice
that all the f.g. projectives are free of unique rank over R if and only

if this is true for each Ri'

We have seen in theorem 3.6 that if R = Rl io R2 for semisimple

artinian RO’ and faithful Ro—rings Rl and R2 and p = (Dl,oz) is a

projective rank function on R, that full maps with respect to Dl remain

full maps with respect to p when they are induced up to R. In the case
where the rank functions are all Sylvester, we are able to prove that the

factorisations of a full map induced up from R to R over R essentially

1

come from Rl'

Theorem 3.9 Let R =R where R is semisimple artinian and each

g R
1R 2 0
Ri is a faithful Ro—ring. Assume that p = (pl,pz) is a Sylvester faithful
projective rank function on R (and, in consequence, the same holds for Di

on Ri). Then, if aQRlR = By 1is a factorisation of a full map as a product
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of full maps over R, there is an invertible map, €, such that Re and

e_ly are defined over Rl'

Proof: Suppose that we have the factorisation over:

aQRlR
R
QﬂRl

SN, A

P'

P2 _ R
Ry

where B,y are full maps with respect to p, the rank function on R. So
p(P') = pl(P) = pl(Q).y must be an embedding, since it is a full map with
respect to a faithful Sylvester rank function. Since Y(P') 2 a(P), we know

by 2.8 that the decomposition of Y(P') given by 2.7 takes the form
L =
Y(P") MOQROR) ® (MleRlR) ® (MZQRZR)r

where o(P) S M

1

If one of MO or M2 is not zero, its rank with respect to the

relevant rank function is not zero; consequently, pl(Ml) < pl(P) and so

a@R R could not be full since its image lies inside M QRlR. So
1

1

Y(P') = M

2, R.
1Ry

Now all we need to do is to show that Ml € Q, for then we take
€ to be the identification of P' with MIQR R, and we see that Be is
1
-1

the induced map Bg; R, where £ is the map P »> o(P) ¢ M1 and € 'y is
1

the induced map Y2z R, where Y is the inclusion of M1 in Q.
1

Since pl(P) = pl(Ml) and B 1is a factor of the full map o,

we see that B 1is a full map. We consider the map over R1

6:M1 c QQRlR -> (QQRlR)/Q, and notice that B8 = 0; hence, since the rank

function is faithful 6 = O, so that Ml c Q as desired.
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4. UNIVERSAL LOCALISATION

One of the first constructions developed in the theory of rings
was localisations for commutative rings as a way of passing from a commutative
domain to its field of fractions. When the theory of non-commutative rings
was developed, it was noticed that an analogue of this was possible for suit-
able sets of elements in a ring provided that they satisfied the Ore condition.
This method was shown to be of particular importance when Goldie showed that
for a prime Noetherian ring the set of non-zero-divisors of the ring satis-
fied the Ore condition and the Ore localisation at this set was a simple
artinian ring.

One construction that was considered but rejected on the grounds
that at the time nothing could be proved about it was the construction of
adjoining universally the inverses to a subset of elements of the ring. Of
course, the Ore localisation is a special case of this construction. However,
in studying the homomorphisms from rings to skew fields, Cohn was forced to
study a generalisation of this construction. He showed that the set of a
matrices over a ring R that become invertible under an epimorphism to a
skew field F determine the epimorphism; more specifically, the ring obtained
by adjoining universally the inverses to these matrices is a local ring L
whose residue skew field is F. Of course, the homomorphism R =+ L =+ F is
our original epimorphism. For the first time, therefore, the construction of
adjoining universally the inverses of some set of matrices required serious
consideration; this was taken a step further by Bergman who considered the
construction of adjoining universally the inverses to a set of maps between
f.g. projectives.

By now, there is a powerful but secret body of knowledge about
this construction that is of fundamental importance for the study of homo-
morphisms to simple artinian rings. The purpose of this chapter is to present
this theory which has been substantially simplified and extended recently.

First, we shall give a simple existence proof for the construction;
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this allows us to develop standard expressions for the elements of the uni-
versal localisation together with a simple description of the equivalence
relation on these expressions given by their equality in the universal
localisation. This is based on and generalises work of Cohn (71) and
Malcolmson (83). Then we generalise an argument of Dlab and Ringel (84) to
find simple homological information on the universal localisation; this
allows us to give a very simple proof of a result of Dicks and Bergman (78);
a universal localisation of a right hereditary ring must be right hereditary.
Also, there is a short discussion of an interesting way to study the ring
coproduct in terms of the universal localisation of a suitable ring. In the
last section, we prove an exact sequence in algebraic K-theory that general-

ises the exact sequence of Bass and Murthy (67) for Ore localisation.

Normal forms for universal localisation

Let R be a ring, and let P(R) be the category of f.g. left
projective modules over R; let I be some set of maps in the category; we

wish to construct a ring R that is universal with respect to the property

b

that the maps REQRa for ael are invertible.

Theorem 4.1 Let R be a ring and ! be a set of maps between f.g. left

projectives. Then there is an R-ring R_ universal with respect to the

T

property that every element R aRa for ael has an inverse.

z
Proof: We use the observation that if we take the category of f.g. projectives
over a ring R, and adjoin a set of maps between various objects subject to
some set of relations and consider the additive category generated by these
maps and relations and our original category, then this is a full subcategory
of the category of f.g. projectives over the endomorphism ring of the object
that was the free module of rank 1 over R 1in our initial category. In our
case, we adjoin a set of maps ;:Q + P for eachmap o:P+Q in I and

adjoin the relations that a; = IP’

Clearly the map from R to the endomorphism ring of the object

and oo = IQ for all o in I.

that was the free module of rank 1 over R makes this ring into an R-ring

with the correct universal property. We shall call this ring R It is

ol
clear that the category of modules that we have constructed consists of the

f.g. projectives over RE that are induced from such projectives over R.

Now that we have shown the existence of this construction, we
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should note that there is no difference between adjoining universally the
inverses of maps between left f.g. projectives or between right f.g. pro-
jectives since we adjoin an inverse to a:P » Q if and only if we adjoin
an inverse to ax:Qx > Px.

We have shown the existence of the universal construction, but
this does not allow us to show in special cases that the ring we have is non-
trivial; therefore, we need a concrete representation of the elements of the
ring together with a way for determining when to such representations are

equal; this is our next goal.
First of all, we show that every map in the category of induced

f.g. projective modules over a universal localisation RZ of R may be

represented in the form fy_lg, where £, g and y are maps defined over

where each aigz. This is clearly true for induced

maps and for the maps ;:Q + P for each a:P »Q, where o is in I.

-1 -1
If flyl gl and f2y2 92 are both maps from RZQRP to RZQ o,
then we find the equation
-1
o g

-1 -1 Y1 1
£1v19; - £yYp 9, = () B, Y, ~3,]
If £y g :R@P +R.@P, and f -1 :R;@ P, > R®P,

171 91°R®RFL * Re®eP 2¥2 93¢ 2R

are a couple of maps, then

-1 -1
£1¥1 9185Y5 95 2 R8Py > Ry2oPy

is given by

£y lg vl =
1" 9177272 9 1 0 Y g
2 2
We see that every map must have this form since all induced maps
are got by successive composition or taking the differences of maps previously
found. The reason for considering such representations of the maps is that we

are able to write down a criterion for two such expressions to be equal maps
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in RZ'

Theorem 4.2 (Malcolmson's criterion) Let R be a ring and I a collection

of maps between f.g. projectives over R. Then every map between induced

projectives over R has the form fy-lg for maps f,g, and y defined

)

over R, and vy = for suitable aie I; further,

a
n

f = f2721g2 if and only if there is an equation where all maps are

-1
1M1 9

defined over R,

Yl (o] (o] gl
v, O g, _ (£>(v|e)
Y o s
3
O Yy |9
fl f2 f3 (o] (o]

for suitable oy € L.

We refer the reader to Malcolmson (83) for a proof in the case
where all elements of I are matrices over R; he only considers elements
of the ring RZ instead of all maps between induced projective modules; the
transformation to this present form is purely mechanical. The only apparent
difficulty arises from the fact that addition and multiplication are not
defined everywhere; however, a moment's thought shows that this causes no
problem.

There is another representation of the maps in the category of
induced f.g. projectives over R that is often useful for performing certain

calculations; this is a generalisation of techniques of Cohn.

Theorem 4.3 (Cramer's rule) Let R be a ring and I a collection of maps

between f.g. left projectives. Then in the category of induced f.g. pro-

jectives over RZ' every map a:R @RP > RZ@RQ satisfies an equation of the

L
form:
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Iia'\ _ .,
Boa =8B

where B,B' are both maps defined over R, and B = , where

n
Bie £, I 1is an identity map on a suitable projective, and o' 1is some map

over Rz .

Proof: We use the generator and relation construction of the category of
induced f.g. projectives over Rz given in the preceding discussion.

Certainly, for 8 in I, the element §' satisfies

which is of the required form; for o defined over R, the eguation

Io

1]
Q

is of the required forxm.

Next, given ai:P +~>Q 1=1,2 satisfying equations:

()

we find that for o

S

2| 8

Finally, suppose that we have equations for i =1,2,

I ai
‘Bi|3i’ 5 =[8,|8"

Q. i1
i

for maps al:Pl > P2 and a2:P2 > P3; then we construct the eguation
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2 By OB

o -8B B o -B] B 0

Since every map in the category of induced f.g. projectives may
be obtained from the generators by these two processes of differences and

compositions, this proves the theorem.

Of course, in the last theorem there are no good reasons why the

I a
representation of o in the equation 8 = B' should be in any way
0O o

unique. We shall see however that Malcolmson's criterion gives us a great
deal of control over such representations.

At this point, it is useful to introduce a pair of formal defini-
tions that we need later. We say that a set of maps I between f.g. pro-

jectives is lower multiplicatively closed if «, BeI implies that

Yy B

upper multiplicatively closed. A set of maps I 1is said to be saturated if

(a ° ¢ I for arbitrary suitably sized vy. Similarly, we may define

every map between f.g. projectives over R that become invertible over RZ

is associated over R to an element of I. We may define the lower and

upper multiplicative closure of a set of maps in the obvious way; it is

convenient to be more careful when defining a saturation of a set of maps
£: a saturation of I 1is a lower and upper multiplicatively closed set of
maps such that every map between f.g. projectives over R that becomes
invertible over RZ is associated to an element of the saturation. For
Cramer's rule, it is useful to use lower multiplicatively closed sets of
maps and for Malcolmson's criterion it is better to use upper multiplicatively
closed ones.

We note the following consequences of Cramer's rule.

Corollary 4.4 All maps between induced f.g. projectives over R are stably

L
associated to induced maps.

Proof: Simply look at the form of Cramer's rule.

Corollary 4.5 All finitely presented modules over RZ are induced from
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finitely presented modules over R.

Proof: A f.p. module is the cokernel of an m by n matrix; by 4.4, this
is stably associated to an induced map between f.g. projectives, and co-
kernels are isomorphic for stably associated maps. So all f.p. modules over
RZ are cokernels of induced maps. Let RzﬂRa:RzQRP > REQRQ be an induced
map; then by the right exactness of the tensor product, the cokernel of
Rana is isomorphic to Rzﬂk(cokera) proving the result.

In particular, this applies to the f.g. projectives over Rz;
however, we cannot conclude that all f.g. projectives over RZ are induced
from R; for example, consider Z + 2M2(z) c M2(z); all f.g. projectives
are free; however, the central localisation of this ring at 2 is isomorphic

to M2(z2), and there are some new projectives in this case.

One use of 4.4 is to show that iterated universal localisations

are in general universal localisations.

Theorem 4.6 Let I be a collection of maps between f.g. projectives over
R, and let ' be a collection of maps between stably induced f.g. pro-
o Then (RE)E' is a universal localisation of R at a
suitable set of maps between f.g. projectives over R.

jectives over R

Proof: Let a : P' - Q' be a map between stably induced f.g. projectives
over RE' Since P' and Q' are stably induced, there is an integer n
such that P' @ Rn and Q' @ R are both induced modules. Clearly, o is
stably associated to a & In' which is a map between induced modules and as
such is stably associated to an induced map by 4.4. Consequently a is
stably associated to an induced map. Adjoining a universal inverse to a map
however has exactly the same effect as adjoining the universal inverse of a
map stably associated to it, so we may replace all the elements of I' by
a set I of induced maps that are stably associated to elements of I'.

(R.) is just (R )=

ol 213 and this is clearly R

Tul

Homological properties of universal localisation

Let I be a set of maps between f.g. left projectives over R.

It is clear that the homomorphism from R to R, is an epimorphism in the

z
category of rings, since there can be at most one inverse to a given map
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o:P + Q in the category of modules over a ring. Consequently, the category

of right R modules may be regarded as a full subcategory of the category

L
of right R modules. It turns out that this subcategory has some interesting
properties that form the content of this section which were worked out with
Warren Dicks. Our next result is a development of an argument due to Dlab

and Ringel (84).

Theorem 4.7 The category of right RZ modules is closed under extensions

in the category of right R modules. Therefore, Ext;(M,N) = Ext_ (M,N)

1

Ry
for RZ modules M and N.

Proof: We may characterise the RZ modules amongst the R modules by the

property that for each o € X, o : P >+ Q, and for each RZ module M, the
induced map lQRa:MQRP > MQRQ is bijective. It is now clear that an exten-

sion in the category of R modules of a pair of R_ modules must be an

z
modules M and N.

R module. It follows trivially that Extﬁ(M,N) = Exti(M,N) for RZ
z
Our next result gives a number of consequences of the conclusion

of this result,

Theorem 4.8 Let R + S be an epimorphism in the category of rings; then
the following conditions are equivalent:

1_
a/ ExtR Ext

b/ Tor?(s,s)

é on left S modules;
:o;

c/ Tor?(M,N) = Tori(M,N) for S modules M and N;

a/ Exté = Exté on right S modules.

Proof: a=>B: let O+ M—+>F + S > 0 be a short exact sequence of right
R modules where F 1is free. Then, we have the exact sequence:
R
1/ 0~ Torl(S,S) d MQRS d FQRS d SQRS =8 >0 ;
we also have the push-out diagram:
2/ O » M » F>8->0
]

0o > Mdis +N=>S >0
by assumption, N must be an S module, and so, we may factor 2/ through
1/ in the following sense; we have a commutative diagram with exact rows:

0 M > F +8->0
R ' v ]

o ~» Torl(S,S) > M?RS +F® S>S >0
|

R I
0o > MQRS + N > S>>0
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R
It follows that Torl(S,S) = Q.

b= c: let M be a right S module and let O+ A > F »+ M > O be an exact

sequence of S modules where F is free; then we have the exact sequence:
R R
O = Tor;(F,S) - Tor;(M,S) >~ 28 S -~ F@ S > M@ S > O,
R R R

Since R + S 1is an epimorphism in the category of rings B&RS = B for any
S module, B, so Tor?(M,S) = 0., Let N be a left S module, and let
O>C=>G~>N->0 be an exact sequence of S modules where G is free;

then
0= TorR(M G) » TorR(M N) >M2 C > MO G >MRN->O
1 1+ R R R

is an exact sequence. For any left S module D, MQRD is isomorphic to
MESD by the natural map sinceR R > 8 1is gn epimorphism; therefore, the last
exact sequence shows that Torl(M,N) = Torl(M,N) for arbitrary S modules

M and N.

c=pa: let 0O+>M->A->N->0 be an exact sequence of right R modules where
M and N are S modules; then because Tori(N,S) = 0, we have the

commutative diagram with exact rows:

o »>M > A > N >0

}

y }
(o4 MERS -> AQRS > NQRS -+ 0
M= M@ S and N = Ne S, so by the 5-lemma A = A® S, which shows that A
must be an S module. It follows that Ext§ = Exté on right S modules.,
We have shown that a,b, and c are equivalent; by symmetry, 4 is

equivalent to them too.

In particular, a universal localisation satisfies all these
conditions. It is clear that an epimorphism satisfying the conditions of
theorem 4.8 need not be a universal localisation, since if I is an ideal
of a ring R such that I = 12, then Tor?(R/I,R/I) =0, but R/I is

seldom a universal localisation of R.

The preceding results allow us to prove a theorem due to Dicks
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and Bergman.

Theorem 4.9 The universal localisation of a right hereditary ring is right

hereditary.

Proof: A ring R 1is right hereditary if and only if Ext; is a right exact

functor in the second variable. If RZ is a universal localisation of R,

1 . .

then Ext; on RZ modules is isomorphic to ExtR which is right exact in
L

the second variable. Therefore, RZ must be a right hereditary ring.

Universal localisation and ring coproducts

There is a useful way to obtain the ring coproduct of two rings
amalgamating a common subring by considering a suitable universal localisa-~

tion.

Theorem 4.10 Let A and B be R-rings; let T =/2a AQRB and consider

[e] B
the map a : (O B) > (A AQRB) given by left multiplication by o 1el);
[e] [e]
then Ta = M2(A H B).
Proof: The elements e =f{1 © e =/0 © nd -1 £ T £
. 11 = ’ 22 ’ [« 37 a a o o orm
o O o 1
a set of matrix units; the centraliser of these matrix units is isomorphic to
e..T e which is generated by a copy of A and a copy of B subject only

117 11°
to the relation that R is amalgamated.

This has the following consequence.

Theorem 4.11 Let Sl and 52 be semisimple artinian R-rings for some ring

R: then Sl o 52 is hereditary.

Proof: M2(Sl E 52) is a universal localisation of the hereditary ring
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Algebraic K-~theory of universal localisation

We mentioned earlier that Ore localisation is a special case of
universal localisation at sets of maps between f.g. projectives; in
particular, central localisation is a special case. Bass and Murthy (67)
found an exact sequence connecting the K~theory of R with the K~theory of
Rs for a central subset S of R, from Kl down to Ko, and later,
Gersten (75) was able to generalise this to a long exact sequence for
central localisation. Recently, Cohn (82) and Revesz (84) were able to cal~
culate the Kl of the free skew field and it was possible to rephrase this
as Revesz did in terms of an exact sequence connecting Ko and Kl of the
free algebra with the K-theory of the free skew field. Here we shall find
a common generalisation of the Bass~Murthy result and the Cohn-Revesz theorem.
The reason for proving such a result lies not just in allowing us to calculate
Kl of a universal localisation, but also in its giving us a way of quantify-
ing Malcolmson's criterion.

First of all, we define a useful category; the definition of this
category is very natural in the context of universal localisation though
rather less obvious in the Ore case. Let R be a ring and I a collection

of maps between f.g. projectives such that R embeds in R Let . be a

5t
collection of maps between f.g. projectives that become invertible over RZ
such that all maps between f.g. projectives over R that have inverses in

R are associated to some map in E; clearly, RE is just R Further,

ail elements of I are injective because of our assumption thai R should
embed in RE' Let T be the full subcategory of the category of f.p.
modules over R whose objects are the cokernels of elements of I. This
category is independent of our choice of I and is closed under extensions
in the category of modules over R, since z may be chosen to be lower

multiplicatively closed.

Theorem 4.12 Let R be a ring and I a collection of maps between f.g.

projectives such that R embeds in R let I and T be as we defined

%
in the foregoing discussion. Then there is an exact sequence,

r s t u
K (R) > K (Ry) > R (D) ¥ K (R) > K (R )
where r and u are induced by the ring homomorphism, t is given by the

map [M] + [Q] - {rP], where 0=+ P % Q=+ M >0 isan exact sequence, and

o 1s an element of E, and s will be defined in the course of the proof.



6l

Proof: Throughout this proof, MB will denote the cokernel of B.

Let oa:P =+ Q be an isomorphism between induced f.g. projectives

over R by Cramer's rule, we have an equation:

27

where B and R' are defined over R and oy is defined over RZ' Since

Ia . :
B and (O al> are invertible over R so is B', so it is associated to

an element of . We attempt to defini a map from such an invertible map

to KO(ED by sf(a) = [MB'] - [MB]. We need to show that this is well-
defined and its restriction to automorphisms defines a homomorphism from
Kl(RZ) to KO(ED. Assuming that we have proven this, it is not too hard to

complete the proof of the theorem, so we shall demonstrate this first.

1 Exactness at KO(R)

Certainly, tu = 0; for given M € T, t([Ma]) =[] - [P],
where M, has a presentation O > P g Q > My>0; since a becomes an iso-
morphism over Ry, u(Q) - u(p) = 0.

Conversely, if u([P2] - [Pl]) = 0, we have an equation over
R.2 P & Rn Z RO P O Rn for some n; so there is an isomorphism

i I'R1 L LR 2 E

between induced f.g. projectives a:RzﬁR(Pl & Rn) - RZQR(P2 & Rn), and so,

by Cramer's rule, we have an equation:

R

for maps defined over R, R:Q' > Q @& Pl ® Rn, B':0' >0 ® P2 ® Rn, where
B,B' are associated to elements of I (since a 1is invertible over RZ)'

o is some map defined over R

1 and I is the identity map on Q.

T’ o)
Hence, t([MB,] - [MB])
= [0] + [P2] +n - [0'] - [Q] - [pl] - n + [Q'], which is [P2] - [Pl],

so that we have exactness at this point.

2 Exactness at Ko(gp
Let a:P = P be an isomorphism on an induced f.g. projective.

Then we defined s(a) = [MB'] - [MB]' where we have an equation:
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wvhere f and B':Q' - Q ® P are both associated to maps in I. So we find

that
st(a) =[Q) + [P] - [Q'] -[Q] -[P] +([Q']= 0.

Conversely, suppose that t([Malj - [Ma 1) = 0; then if we have
2

a,
i .
presentations O - Pi -+ Qi > Mi +0 for i=1,2, [Qlj - [Pl] = [Q2] - [P2],

n

so for suitable n, we have an equation, Ql -] P2 ® R Q2 &P ©& Rn. We

1
B,
construct from this, presentations for Ml and M2 0O+ P, & Q. * M, >0
i i i
for suitable P and Q. This is easy for
n al®I®I n
> > > > i i M
(o) Pl & P2 & R Ql L4 P2 @ R Ml O 1is a presentation for 1
n I®o 61 n
and O - Pl -] P2 & R > Pl -] Q2 & R > M2 + 0 1is a presentation for
M2.

: : -1, .
Consider the map over RZ defined by 82 Bl.RZQRQ - RZERQ°

Because 62(85161) =B we see that S(B—;Bl) = [Msl] - [M52] = [Ma1] - [Ma2]°

ll

So we have shown exactness at KO(ED.

3 Exactness at Kl(RZ)
This is rather harder to show than the previous two parts.
Certainly, rs = 0; for, if a:P > P 1is an automorphism over
R, the equation 1l.o = o satisfies the condition of Cramer's rule, so
rs(o) =[M]-[M]=o0.
o o
Conversely, suppose that o:P = P is an automorphism of an

induced f.g. projective over RZ such that s(a) = 0; we have an equation:

where B:Q' > Q & P, R':Q' > Q & P are associated to elements of I and
we deduce that O = s(a) = [MB,] - [MS]°

We wish to show that the class of o in Kl(RZ) lies in the
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image of Kl(R) in Kl(RE)' and oir equation shows that the class of ¢
in Kl(RE) is equal to that of B "B'; so we need to examine what it means
if [MBJ =[MB,] in Ko(g).
We define a recursive relation ~ on the objects of an exact
category E, that amounts to the relation [X] = [Y] in KO(E).
We start our recursive relation by defining that X ~ ¥, if
X2 Y; next, if X~ X', and 2 ~ 2' and we have exact sequences
0O+>X>Y>2Z2>0, and O-~>X'>Y'~>2'>0, then Y~ Y'; similarly,
if we have the first exact sequence, and in place of the second we have the
exact sequence 0O =+ 2' > Y' > X' > O we extend the relation to Y ~ Y'.
Next, if X ~ X', and Y ~ Y', and we have exact sequences
O+X>Y=>2>0
O->X'>Y'">2">0, then Z ~ 2'; and if we have exact sequences
O+X=>Y>2->0
O->2'>Y'">X'">0, then 2~ 2°'.
We repeat these operations as often as they apply, and finally we
make sure that the relation is transitive by defining that if X ~ X' and
X' ~ X", then X ~ X".
We examine what this means in the category T; that is, we

attempt to find the equivalence relation defined on the maps by Mu ~ MB for

o, B in I.
Mu = MB if and only if o 1is stably associated to R. Our
first operation for generating the equivalence relation on the modules induces

the relation on maps that if Mu'"Mu,, and MY ~ MY then

) " )

generating the equivalence on modules induces the relation on maps that if

M ~M  , and M or M then
[ o [+ o o]

o . Our second operation for
)

o]
M ~M,.
Y Y
We have that MB ~ MBl for the maps B and R':Q' > Q ® P, so
we know that we can pass along some chain of simple operations of the type

described above to show this equivalence; by passing to (g g ) and
m

''o

CD 1 > for suitably large m and n, we may assume that any stable
n

associations that occur in this chain are actually associations. We wish to

show that this equivalence on maps forces the image of B"lB in Kl(RE)

to lie in the image of Kl(R) in Kl(RE)'
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If a,a":P, > Q1 are associated over R, the class of the map

1
P

-1
v, i = i ':0, . li
If a;r0g Pi > Qi for i 1,2 satisfy a, ai Ql -+ Ql ies

in the image of Kl(R) in Kl(RE)’ then from the equations

a—la'=Q1 > Ql over R in Kl(RE) clearly lies in the image of Kl(R).

2

I

B8 I o) -
o I) and (Y o are trivial in KI(RE)’ we see

Oy B 0.1 o
that the image of ( ) in K. (R_|) 1is equal to the image of ( )
o ey 12 o a2

and since the class of (

a (o]
and the image of ( ). So we need to check that the image of

Y Gy

- 1
(“1 ° ) 1(“1 ° ) in K (R) lies in the image of K (R), which is clear.
o o al
2 2
(o} -1 al O
Finally, if (al ) ( 1 ,) lies in the image of K. (R) in
0 o, (o) 02 1

Kl(RZ) and ailai does too, then so must aglaé, which shows that the
second operation generating the equivalence relation MY ~ My' preserves

the property that y_ly' lies in Kl(R).
We are left with showing that our map s from isomorphisms of
induced f.g. projectives is well-defined and induces a map from Kl(RZ) to

KO(EQ. This is where Malcolmson's criterion is most useful.

Suppose that B:RZ@RP e-RZQRQ is an isomorphism between induced

f.g. projectives and that we have two equations defined by Cramer's rule:

I|R I8
(a|a1)< 1) = (a|a") (YlYl)(;+——z> = (|
o|B ol g

and (a|u1), (a]a'), (y]yl) and (y|y') are associated to elements of I;
then we know that



TN
(a2

so, (0 0 0]

by Malcolmson's

o o} (o] (a o (o) a'>
1 - o .
Y. Y Y1 Yl Y Y
-1 ,
1) g al o O a' = 0 ;
Y. Y v Y

criterion, we have an equation:

a al 0O O O O a ul
L
© Y, Yy y,0 0 Y ] My ol
o O o 0 51 o] o u3
o O O 0 O 62 €, u4
00 01 €0 O 6
1
where 61,62, 52 and T are associated to elements of
3
Y4
From this, we construct two equations:
u o a a o O o o o
1 R 1 '
1 LN o vy; vy vy 0 Oy
u3 o] - o O o O 61 o o]
u, © 0O 0 0 0 o© 62 o)
g o 0 0 o1 g o
and also
ul (o] o al o o (o] (o] ~-a'
w, Y - o v, vy vy, 0 © o
2 ug o {21y _[fo ol o ot 8§, © 0
u4 o o T o O o O (o] 62 -52
@ o] o O o I El o] o]
First of all, it is clear that RHS(l) and RHS(2)
= + + + i
and [MRHS(l)] [Mél] [M62] [M(““l)] [M(W,)], whilst
= [M + + + .
M 2y ] [611 [M62] ] [M(Wl)]

- = + 'Y ] . ]
if X,Y € I, [MXY] [MX] [My] when XY is defined. Since

65

I,
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lies in I,

B
= O
~—"
'

uy 0'

u2 Y _

My O ]= 1 must be associated to an element in I and

u, ©

4

g o
[MLHS(l)] = [Mu] + [Mv] = [Mu] [Mv -t 1= [MLHS(Z)]

o I
We ded that M + M = i
e deduce that [ (aal)] L (YY')] [M(aa')] +[M(YY1)]' which

shows that s is well-defined.

We need to show that it induces a homomorphism from Kl(RE) to

KO(EQ, and to do this, we need to show that S(B 2) = s(B), and

[¢]
s(By) s(B) + s(y). It is convenient to show that
I8
1

OB

s s(B) for arbitrary Bl.

Suppose that we have equations:

I 82 I 83
(@]a;) ——)= (alan (Ylvl) +—>= (yly"
0B olg

1

then we find that

B3
yylloo 1|o 8] )
o 0 | o o o} I B

1 2
oo B

operating by a permutation matrix internally on the left hand side of this

equation does not alter [M Y. 00 ] in any way and allow us to change the
1
(OO aai)
second matrix on the left hand side to the form 1 o) 83 i so
(o] 82
o I Bl
o O B

s (I Bg =t Y Y, 0 y')]_ [My Y, 00 1= [M(otot'):| - [M(otozl):| = 68
[e ]3] 00 aoa' (O o a J

as we wished to show,.

In order to show that s(By) s{B) + s(y), we first show it

under the assumption that B ¢ z.
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s(;éz) = s(By) by our last step; it is clear that s(de) = s(e) if 6§ 1is

an isomorphism over R; so we find that

=T Y B O
s (By) ~S’(O BY)— SIY)

1f la)/I|y,\ _ \ <I|O o)Blo (sl o)
1 1 —(f!f!), = 1
(O v > I ofa o (O 1 Yl) o) | ao

eTo

B O _ _ _
so s( )- [MB] + [M(aa,)] [M(ml)] = s(B) + s(y), and

o
s(BY) = s(B Y) = s(B) + s(V).
Finally, we deal with the general case.

I8
Assume (6|61) ( l> = (6|6') then, by the last step,
OB

1{o \ _ 1lo _ [T =8 y\W\_ ,
s(6|61)+s<0 BY)—S (<S|<51) <5~'ﬁ) =s (SIS)(O %)—s(6|6)+s(y)

so s(By) = s(é 83) = s(y) + s(66') - s(éél) = s(y) + s(B) which shows that

s induces a homomorphism from Kl(RE) to KO(ED, and so completes the

proof of our theorem.

The Bass-Murthy sequence is a special case of this result; it
would be of interest to know whether this sequence may be extended to a long
exact sequence of K-groups for universal localisation as Gersten does for
central localisation. It appears very likely for special cases such as the
passage from a fir to its universal skew field of fractions. This leads to
the following conjecture for K2(F), where F 1is the free skew field on
some set X over an algebraically closed field, k. K2(F) should be

X
K2(k) xX k , where A 1is the set of stable association classes of full
A
matrix atoms over k<X>,
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5 UNIVERSAL HOMOMORPHISMS FROM HEREDITARY TO SIMPLE ARTINIAN RINGS

In this chapter, we shall prove our main.theorems on universal
homomorphisms from hereditary rings to simple artinian rings; we shall find
that these arise as universal localisations at the set of maps between f.g.
projective modules that are full with respect to a projective rank function
that takes values in %-z. In doing so, we shall also develop techniques
for studying intermediate localisations, which generalise the results known
to hold for firs, and which will lead in later chapters to a detailed analysis
of the subring structure of these universal localisations of hereditary rings.
However, the most interesting result of this chapter in the short term is the

construction of the simple artinian coproduct with amalgamation. This is

given by constructing a universal homomorphism from the ring Sl < 82 to a
(o]
simple artinian ring Sl g Sz, where Si is simple artinian. In order to
(o]

assist the reader in understanding the method, we give a brief outline of
what we shall do in this case.

sl gg 82 is a hereditary ring with a unique projective rank func-
tion o by 3.1. We consider what maps between f.g. projectives have a chance
of becoming invertible under a suitable homomorphism to a simple artinian
ring; firstly, the homomorphism must induce the projective rank function p
on Sl %O 82 since this is the only rank function. Therefore, if a:P =+ Q
is a map that becomes invertible under a homomorphism to a simple artinian
ring, p(P) = p(Q), and a cannot factor through a projective of smaller
rank; that is, o is a full map with respect to the rank function. At this
point, we consider the ring obtained by adjoining the universal inverses of
all full maps with respect to the rank function, since Cohn (71) has shown
that in the case where Si are all skew fields that the result is a skew
field; we are able to show in this case that this universal localisation is
simple artinian as we wanted it to be. We have been calling such constructions
by such names as the 'simple artinian coproduct' or the 'universal homo-

morphism from the hereditary ring R to a simple artinian ring inducing the
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projective rank function p; we shall not justify these names immediately,
but in chapter 7 when we discuss homomorphisms to simple artinian rings in
greater generality, we shall see that all other homomorphisms from hereditary
rings to simple artinian rings inducing the given projective rank function

are specialisations of the one referred to as universal.

In fact, the general method applies to constructing universal
homomorphisms from rings with a Sylvester projective rank function to von
Neumann regular rings, so we shall deal with this generality in the opening
stages of this chapter; we shall complete the discussion of homomorphisms

to von Neumann regular rings in the next chapter.

Universal localisation at a Sylvester projective rank function

Theorem 5.1 Let R be a ring with a Sylvester projective rank function ¢
having enough right and left full maps (see 1.16, and the following defini-
tion). Let I be a collection of full maps with respect to o between f.g
projectives: then the projective rank function p extends to a Sylvester
projective rank function on R, Py that has the same image as p and has
enough right full and left full maps. The kernel of the map from R to R

L
lies in the trace ideal of the projectives of rank O.

Proof: First of all, we may assume that I is lower and upper multiplicat-
ively closed (see the discussion before 4.6), since all elements of the lower
and upper multiplicative closure of I are full with respect to p by 1.15
and become invertible in RZ‘ The use of this observation is that it puts
us in good shape for both Cramer's rule and Malcolmson's criterion.

We prove the last statement of the theorem first, since it is a
simple step.

Let r € R be in the kernel of R > Rz; then, by Malcolmson's
criterion, we have an equation:

(8,1

(=2
[

where ai,éi e I and Bi,y,¢,u are maps defined over R.



70

This shows that the nullity of LHS(l) is 1; by 1.15, and the

fact that 1,a are full with respect to p, we may deduce that the

1'%
nullity of (i g) is 1, so that the nullity of r is 1, or that its inner
projective rank with respect to p 1is O, which implies that r must lie
in the trace ideal of the projectives of rank O with respect to p. So,
it is clear that Ry is not the zero ring.

Cramer's rule and Malcolmson's criterion give representations of
maps over RX’ and ways of characterising when two representations are the
same. We use these in order to define the rank of a map between induced f.g.
projectives over RX' and then to show that it is well-defined; then we
show that this rank function on maps between induced projectives is the
inner projective rank associated to a projective rank function that satis-
fies the law of nullity for these maps; it is not a hard step to show that
the rank function must actually satisfy the law of nullity for all maps
between f.g. projectives.

Given a map, B: RZQRP + R Q P between induced f.g. projectives,

2
Cramer's rule gives us an equation:

I,(8
2 (a|al) _2¥_£ = (ala")
60’8

where (aal) €%, Q 1is a f.g. projective over R,Bl is defined over RX'
and (aqa') 1is defined over R.

It is clear that if p extends to RX' we should define
pX(B) = plaa') - pla) = plaa") - p(Q) = plaa') - p(aai) + p(Pl)

The first definition shows that p(B) is non-negative, if it is
well-defined. Suppose that we have a second equation:
I/ |8

2

3 (ylv) (=2 = (y|y)
where (yyl) e, Q' 1is a f.g. projective over R, 62 is defined over

RX' and (yy') is defined over R. Then, from (2) and (3) we construct

the equation:

B1
I t
4 a o o] o0 : = [* O a
)
O vy Y|V 2 o v, Yyl

O |B-B
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where I 1is an identity map on a suitable f.g. projective over R.

@ oy 00 \-1 /fa'
Over Ry, o=(oo| 1D
oy, Yy Y

By Malcolmson's criterion, we have an equation:

o al 00 O O o'
Oy YY, 0 O | v'\ _
> ool ool 5,0 |0 <%>("|T)
00 00 0 &, | &,
00 0TI ¢ © 0

where Si,u, veZl

We see that the right nullity of LHS(5) is D(PZ)' Since 6. and §, are

1 2
o oy oo o
full, we see from 1.15, that the right nullity of [ O Y1 YTy y' is p(P2).
00 OI O
In turn, we look at the bottom row of this matrix of maps and apply 1.15 to
]
deduce that the right nullity of o 0ll Ca is p(P,). Since P is the
oy, v ' 2 2
T
codomain of a' and (¢ %1 ° is clearly right full (because ! NN
Y o Y, ¥ o Y Yy,

L)
is full), we may write a minimal factorisation of * % ° a' as:
Oy, vy
]
6 @ oy Ol (T Gy Ix)
Oy, vyl Y T,

where p codomain Tl =p ¢ 0ll ° = pfcodomain i % °
T, Ov, v Oy Y

and so Xl must be a full map. From (6), we construct two equations
; <1:l O.> él‘g _ g ay o\ol
Ty Y Yy Yy
7. O X. "X\ - /o a, Ofl-a’
8 (T; y> (Ol 12> <; yi ¥} O

Using lemmas 1.15 and 1.13, we see that

T - T O - L]
p(ozozl) + plyy") = D<T; Y') = plaa') + p(wl)
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Therefore, p(yy') - p(yyl) + p(Pl) = plaa') - p(aal) + p(Pl) which shows
that our definition of Py is well-defined.

. a O _
It is useful to show next that pz<; S) = pz(a) + pz(s) and
that when af 1is defined pz(aB) < pz(a),pz(s).
So suppose that (yy,) Lo} o (yy') and (86,) I8y - (88"
pp AR P YY o g

with the usual conditions obtained from Cramer's rule. Then, if qR is

defined we construct the equation:

g '
8 51 oo I Bl _ [ 61 o4 &
O-y'YIl Y o8 O-y'"y ] O
O JaB
8 61 o4& § 61 0O
S0 DZ(GB) =p -p + p(dom a);
o-y'yO O -y' vy
8 51 o & § §* o —61
p =9 ; so by lemma 1.14,
O=-y'yoO oo v ¥'
§ 8§ 038§
p L < p(88') + pl(codom (yy')) therefore,
o -y'vyoO

pz(aB) < p(88') + p(codom(yy')) - p(dél) - p(yy") + p(doma)

p(88") - 0(661) + p(codoma) since (yyl) is full with respect to
p. Since codom ¢ = dom B, pz(as) < pZ(B)°
§ &' 0 -61
Again, o < plyy') + p(dom (88')) and so we find
00 v v'
pz(aB) < plyy") + p(dom(88')) - p(ddl) - p(yyl) + p(dom)
=plyy") - p(yyl) + p(domg) = pz(a) since (561) is full.
For arbitrary o,R, we have the equation:

o

o 8,

§ o} '

o SMo T o« o ) § o 0 &

ol vy, lo 0O 0 «a o 0 y y' ©
o o0 o B

o O
from which it is clear that pz< ) =p (a) + p_(R).
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Given a f.g. projective P over RZ' we wish to define DZ(P)

and the natural thing to do is to define DZ(P) = pz(ep) where e, is an
idempotent map defined over RZ on aniinduced f.g. projective RZ@RQ such
that the image of e is isomorphic to P. We check that this is well-

P
defined.

If e,f are idempotents on RZ@RQl, and RZQ respectively

R
such that their images are isomorphic to P, there are maps «,f8 over

RZ such that aB = e, and Ba = f; so pz(e)

Dz(e) = DZ(GB) < DZ(BaBu) = pt(Ba) = pz(f) < pz(asas) = pz(e) so that
equality must hold and DZ(P) is well-defined.

It is easy to show that the rank Py that we have defined on

maps between f.g. induced projectives is the inner projective rank function
with respect to the projective rank function Py that we have just defined

on f.g. projectives over R_.. Consider the diagram:

r

o
R& P — R &P

I'R1 IR 2
\\\\E\\ /://///
Q
where Q is some f.g. projective. Let Q = (RZﬁRP)e; then a = Ee; for
suitable maps B:R.2 _P. - R_®_P, ;:RZQRP + R_®_P So, pyla) < p.(e) = p (Q);

I'R1 I'R IR 2
conversely, we recall that the definition of pz(a) gives us an equation:

9 (8 B = (B B')

where the usual conditions of Cramer's rule hold, and, by definition,
pyla) = (8 8" = p(P).

Let (B B') = v§, y:P' > P", &:P" > P'" be a minimal factorisa-
tion of (B B'); then

I- 0O I- ~o
-1
10 P Ty 8 t
o a o} I
consequently, RZﬁRP' E (RZﬁRE) ® Q, RZQRP" = (RZQRE) ® Q" and also,

RZQRP'" = (RZQRE) ® Q; and partitioning (10} according to these decompositions
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over R, we find the equation:

I- 0 I- ¢ I- I- O I- (0]
p [ p 1 3! -{ P P
o @ €2 €3/ \%2 93 o2/ \1 V2
so, over RZ’ o = u2v2 where u2:Q -+ Q"; but we have the equations:

p(Q") = p(P") - p(P) = p(B B') - p(P) = p(a), which shows that p on maps
between f.g. induced projectives is the inner projective rank function
associated to the projective rank function p, and also that there are
enough right and left full maps with respect to this rank function for maps
between induced projectives.

Let a:RZQRPl 4—RZQRP2 and B:RZQRP2 4—RZQRP3 be a pair of
maps between f.g. induced projectives such that af = O; we have the usual

equations deduced from Cramer's rule:

I o I Bl
(v Yl) = (yvy") , (8 61) = (868"
0« o B
then
B1
§ 6, 0O ‘ o) 1] B \= (6 61 © l s
- ' - '
o] oB
8 61 o o0\-1/§
so O=o0B = (OO O]I) by Malcolmson's criterion
O - L]
AR O Y °

we have an equation over R:

§, 00 o o '
o -y' ¥ Yl (o} (o}
12
o o o (E) it
1 o
o} o} ° e, )
© 0o oI ¢ O o}

where € rHeY lie in I; so the right nullity of LHS(12) = p(P3). Since

€ and ¢

1 5 are full, we deduce from 1.15 that the right nullity of
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"\ is p(Pa) and, in turn, the right nullity of

8 61 (¢}

P
O O o
o -L o
-+
O < O
H < O
—

is p(Pa); so, because (

§ 61 (o) 6') (6 61 0
o =p .
O-y'yoO o -y'y
We see from 1,14 that
§ &' O -61 § 61 o §' § &, 0O
P(S 8" + oy ¥') =p =0p =p
o0 vy ¥' oO-y'yo o -y'y
=p(8 61) + (v yl) - p(Pl)

) is right full,
o -y'y

So pgla) + p (B) = p(8 8") = p(8 &) +p(P)) +ply ¥ ~ply y)) +p(P)

< p(8 8) + poly yl) - p(Pl) - p(8 61) + p(P2) - ply yl) + p(Pl) = p(P,),

which proves the law of nullity for maps between f.g. induced projectives.
Given an arbitrary map a:Ql > Q2 between f.g. projectives over

RZ' we define p_(a) to be the inner rank of o with respect to the rank

z
function pz on f.g. projectives. If a:Ql > Q2, B:Q2 > Q3 are maps such

that af = 0, we find induced f.g. projectives such that RZQRPi = Qi ® Qi

s . a O) . .
for i 1,2,3; then o ol* Ql ® Ql > Q2 ® Q2.
B O O . 1 ) ' N
(? IQ' O) TR, 80, >0, 80,8 (Q3 ® Q2) are maps between f.g. induced
2
- a 0\ /80 o\ _
projectives such that (O O> (O IQ. O> =0 so
2
a O B © o}
+ )
pz(o o)+°>:(o I o)s"z(Qz) p5(Qy) but
2

o O o I [¢)

o] o] o]
pz<ct ) - pz(a) , pz<s o >= pZ(B) + pz(Qé) so we deduce that
2

pz(a) + pz(B) < pZ(Q2) as we wished to show. So pz defines a Sylvester
rank function on Rz.
Finally, we know that all maps between induced f.g. projectives
a O

factor as a right full followed by left full map. So o o

does (taking
the notation of the last paragraph) and it follows that o must since it
o O o O

factors through <0 O> and has the same rank as o o)

It is useful to be able to prove that all f.g. projectives over
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R are stably induced from R in the circumstances of theorem 5.1; this

I
is not in general true, but what does hold is sufficiently good for our

purposes.

Theorem 5.2 Let R be a ring with a Sylvester projective rank function p
having enough left and right full maps; let I be a collection of full

maps with respect to p; then any f.g. projective Q over R2 satisfies

an equation of the form:

n ~
Q@R ©Q FRM®P

where p(QO) =0, and P 1is an f.g. projective over R.

Proof: Let e be an idempotent in Mm(RZ) such that R?e = Q; then by

Cramer's rule, we construct the commutative diagram below:

R &_B R & vy
) 2R
—_— —_— e —
Re®2F) Re@:Ps Ry®2P3
R @ o
2R
Res IR oo, R
Rs 5 QR i b o 9OR;

where o = By 1is a minimal factorisation of a over R, p is the projec-
tion of Rm+n onto Q & R and 1 1is a left inverse to p.

RP2 >0 ® Rn must be surjective; moreover,
by the definition of Py pZ(Q ® RN) = p(P2); so in the equation

The map (RZﬂRy)¢p:Rzﬂ

R.® P, fo e R? ® 9, pZ(QO) = 0, as we wished to show.
Incidentally, this shows that the rank function Py is the unique

extension of the rank function p on the image of KO(R) in KO(RZ); for

if @ 1is an f.g. projective such that DZ(Q) = 0, there is an equation

0 ® e QO = RZQRP, where p(P) = n, from which it follows that the rank

of QO wunder any rank function extending p must be O0; the equation proved

in theorem 5.2 for arbitrary Q shows that there is a unique rank function

extending op.

Let R be a ring with a Sylvester projective rank function p



77

and let Zp be the collection of full maps with respect to p; we call the

ring Ry the universal localisation of R at p, and we shall in general
e — 1
write it as Rp' In the case where p takes values in E-Z, we are able

to prove a great deal about such a ring.

Theorem 5.3 Let R be a ring with a Sylvester projective rank function p
taking values in %-z; then the universal localisation of R at p, Rp'

is a perfect ring with a faithful Sylvester projective rank function p and
all f.g. projectives over R are stably induced from R. The kernel of the
map R - Rp is the trace idzal of the projectives of rank O, and R =+ R

is an honest map.

Proof: We shall need the last half of this theorem in order to prove the
first part.

Since p takes values in %-Z it is clear that there are
enough left and right full maps, so we may apply 5.1 and 5.2; in particular
Rp has a Sylvester projective rank function pZ taking values in %-Z,
and the map R - Rp must be honest with respect to the pair of rank
functions p, DZ'

Let P be an f.g. projective module over R such that

DZ(P) = 0; there is an idempotent e in Mn(Rp) such that R%e © p and
pz(e) = DZ(P) =0, so DZ(In - e) = n. By Cramer's rule, we have an
equation:
I - 1
(a|al) (o I_e) (ala®)
where (aal) is a full map and (aa') is defined over R; since In - e

has rank n, (oa') is a full map over R, and so, it is invertible over

RZ;

e=0, P=0, and pZ is a faithful rank function. All projectives of rank

therefore, In - e must be invertible and so the identity map. Hence,

zero over R must be killed by the homomorphism, so by 5.1, the kernel of
the map is precisely the trace ideal of the projectives of rank O. By 5.2,
all f£.g. projectives over Rp are stably induced from R, It is easy to see
from this that all maps over Rp that are full with respect to pZ are
actually invertible. For, if a:Q1 -> Q2 is a full map with respect to pZ

: . n .
over Rp, there is an integer such that Qi ® R = RpQRPi and

o @ In:Q1 & RZ -> Q2 ® RZ is still a full map with respect to pZ but this
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time it is a full map between induced projectives.

By Cramer's rule, we have an equation:

where (le) is a full map over R and (gR') is defined over R; since

(g g) is full with respect to pZ,(BB') must be full and so it is invertible

over R , which shows that o itself is invertible.

P Next, we show that the descending chain condition holds on f.g.
left ideals over Rp of bounded generating number with respect to pZ;
clearly, this implies that Rp is right perfect, and the left perfect
condition will follow by symmetry.

If there are any infinite strictly descending chains of f.g. left
ideals of bounded generating number, we choose one IO > Il S.s.. Where all
modules have the same generating number, and this is minimal for such a
descending chain to exist. We find f.g. projectives with surjections
Pi > Ii such that pZ(Pi) is the generating number of Ii' and construct

the diagram below using projectivity.

TO =] fl =] fz cesseanse
o o
o] 1
pah—_—-Pf————-Pz cessenne

. 2
Since Ii z Ii+l' the map we construct from Pi+l to Pi
cannot be full since it is not even surjective so there is a projective Qi

P, R i image of .
such that pZ(Qi) < pz( l) and oy factors through Ql, the ge o Ql

in Ii is a left ideal Ii containing I of generating number strictly

less than that of Ii’ which is contradict:iy since we may choose a strictly
descending chain of left ideals from the sequence {Ii} such that all modules
have the same generating number less than that of the sequence {Ii}.

As noted before, this argument shows by symmetry that Rp is

also left perfect, so our theorem is complete.
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Constructing simple artinian universal localisations

Most of the time, we shall be able to deduce from this last
result that Rp is actually simple artinian as we shall see in the next two
theorems. First of all, however, we give an example of a ring with a faithful
Sylvester projective rank function that cannot be embedded in a simple
artinian ring at all. We consider the endomorphism ring of the abelian group

o] 2 ® C where Cn is the cyclic group of order n. This ring has two non-

trivial idempotents corresponding to projection on C 2 and C ; we assign
2 . 1 P . .
the ranks §-to the first, and g-to the second idempotent. It is a fairly

simple matter to check that this gives a Sylvester projective rank function
on the ring. It is clear that it cannot be embedded in a simple artinian
ring.

The next theorem was proven in a rather different way in
(Dicks, Sontag 78); we present it here as a simple corollary of the last

theorem.

Theorem 5.4 Let R be a ring with a Sylvester projective rank function p
taking values in Z; then Rp is a skew field and the map R = Rp is

honest.

Proof: We know that Rp is a perfect ring with a faithful Sylvester pro-

jective rank function taking values in Z; 1let a,b be elements of

P
z
Rp such that ab = 0; then by the law of nullity pz(a) or else, pz(b)
must be O, which implies that a or b must be zero. So Rp is a domain

and a perfect ring which forces it to be a skew field.

This is the classical case, and it is quite sensible to recall
at this point some of the examples to which it applies; all our examples are
firs, which have the unique rank function on the f.g. projectives since these
are free of unique rank. The free algebra on a set X, k<X>, 1is a fir, as
one sees by writing it as the ring coproduct g k[xi] as xi runs through
X. We generalise this slightly to the ring E<X> generated freely by a set
X of E-centralising elements; this is a fir by the same argument. There is
a further generalisation of this example; let M be an E,E bimodule over
the skew field E; we may form the tensor ring on the bimodule M, E<M>,
which is a graded ring whose nth grade has the form 3 M. It is shown in

(Cohn 71) that this is a fir. The unique universal localisation that is a
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skew field for these firs are written as k<4X}, E<{X», and E<{M».

Our next theorem gives different circumstances under which Rp
is forced to be a simple artinian ring; this will be exactly what we shall

need to show that the simple artinian coproduct exists.

Theorem 5.5 Let R be a ring with a unique projective rank function op.
Assume that p 1s a Sylvester projective rank function whose image is

1
precisely ;-z; then the universal localisation of R at p, Rp, is a

simple artinian ring of the form Mn(F), where F 1is a skew field.

Proof: We know that Rp is a perfect ring such that all f.g. projectives
are stably induced from R; so any rank function on Rp is determined by
its values on the image of KO(R). There is a unique rank function on R,
so there is a unique rank function on Rp. If N is the nil radical of R ,
we know that Rp/N is semisimple artinian; since Rp has a unique rank
function, RD/N must actually be simple artinian, and since the image of
the rank function is precisely %-z, and all projectives in RD/N lift to
projectives over Rp, RD/N must be Mn(D) for some skew field D. The
matrix units lift from RD/N to Rp, so Rp = Mn(R'), where by Morita
equivalence, R' 1is a perfect ring with a faithful Sylvester projective
rank function taking values in Z, so, by the same argument as for 5.4,

R' 1is a skew field, which completes the proof.

This theorem applies well to the ring coproduct of simple artinian

rings amalgamating a common simple artinian subring.

Theorem 5.6 Let Sl and 82 be a couple of simple artinian rings with

common simple artinian subring S. Then S is an hereditary ring with

15 52
a unique rank function p. Therefore, (S1 g Sz)p is a simple artinian ring,
the simple artinian coproduct of S1 and 82’

Si = Mni(Di), for skew fields Di’ (S1 o Sz)p = Mn(D), where

amalgamating s, 1If

n=1l.c.m. {nl,nz}, and D is a skew field.

Proof: From 3.1, we know that S has a unique rank function p; if

[~
1872 1
S, ®M_(D,), the image of p 1is precisely =% so, by 5.5,

i nj i n

(Sl g Sz)p=Mn(D) for some skew field D.
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Following Cohn's notation and terminology for the skew field co-

product, we call this ring the simple artinian coproduct of S1 and 52

Of course, we may

amalgamating S and we denote it by the symbol S1 g 52.

construct the simple artinian coproduct of finitely many simple artinian
rings, Si, amalgamating a common simple artinian ring in exactly the same
way; for infinitely many si’ we have to be more careful. In this case, the
last theorem is proved in the same way provided that l.c.m.{ni} exists,
where si = Mni(Di); when this does not exist, our universal localisation
at p exists but it will be a von Neumann regular ring, that is not simple
artinian.

Another generalisation of 5.6 that it is worth mentioning at
this point occurs if we amalgamate a semisimple artinian ring rather than a

simple artinian ring; by 3.1, we know that if o:R_ - Si, i=1,2, are

[o]

embeddings of the semisimple artinian ring R in simple artinian rings

[o]

S1 ﬁg 52 has a rank function if and only if al and o, induce the same

rank function on RO. When there is a rank function, it is unique and we

may apply 5.5 to show that the universal localisation of S1 ﬁo 52 at this

rank function is a simple artinian ring, which we shall call the simple

artinian coproduct of S1 and 52 amalgamating Ro, and write as

S1 ﬁ; 52. It is important to bear in mind that this exists only if the

same rank function is induced on Ro by the maps from Ro to Sl and 52.
Given a ring with a Sylvester projective rank function to %-Z,

we have already seen that it need not arise from a map to a simple artinian

ring. However, if our ring is a k~algebra, we can show that there is an honest

map to a simple artinian ring inducing the given projective rank function.

Theorem 5.7 Let R be a k-algebra with a Sylvester projective rank function
1 : : :
p to ;-Z; then there is an honest homomorphism from R to a simple

artinian ring inducing the rank function op.

Proof: We saw in 3.1 that p extends to a projective rank function op on
Mn(k) f R, which still takes values in %-z; since the rank functions on
the factor rings are Sylvester, that on the coproduct must also be Sylvester
by 3.7, and the map R - Mn(k) YR is honest by 3.6. Mn(k) YR = Mn(R')
and the rank function on the coproduct induces a rank function p' on R'
which takes values in Z. Consequently, by 5.4, we have a homomorphism from

R' to a skew field F that is honest and induces the rank function o' on
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R'. We have a map R -+ Mn(F) which is the composite of honest maps and must

be honest.

In particular, we consider when Rp is a k-algebra for a ring
1
R with a Sylvester rank function p taking values in ;—z; we see that
there is an embedding of Rp in Mn(F) for some skew field F, so the nil

radical of R must be nilpotent of class at most n.

Intermediate universal localisations

Before leaving these matters for the time being, we shall develop
a few results on intermediate localisations of a ring R at some set of maps
full with respect to a Sylvester projective rank function p. We wish to
have useful criteria for the embedding of such rings in the complete localisa-
tion at all the full maps. This question is not immediately important, so the

reader may wish to skip these results until they are referred to later on.

If R 1is a ring with a Sylvester projective rank function p,
and I 1is a collection of full maps with respect to p, it is clear that

Rp must be the universal localisation of RZ at pz. So RZ embeds in

Rp if and only if is a faithful projective rank function. There is a

P
I
useful way of determining when this happens. We define a set of maps I to
be factor closed, if any full left factor of an element of I is invertible
in RZ'

Theorem 5.8 Let R be a ring with a Sylvester projective rank function p
taking values in %—z; let I be a collection of maps full with respect to
p; then RZ embeds in Rp if and only if Py the extension of p to

RZ’ is a faithful projective rank function, which is true if and only if the
lower multiplicative closure of I, I, is factor closed. The image of R

T
in Rp is always a universal localisation of R.

Proof: We have already seen the first equivalence. Next, suppose that Py

is a faithful projective rank function and let o ¢ I, a = By where B8,y

are full maps B:P - P', y:P' » P", Over R B has a right inverse, and

zl

L= = i i
so, RZERP RZERP @ coker(REQRB). pz(coker(RE&RB)) O so it must itself
be zero if the rank function is faithful, and, in this case, B has an
inverse.

Conversely, suppose that I is factor closed, and let e be an
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idempotent such that pz(e) = 0; we have an equation by Cramer's rule:

where (aal) € L; since pz(e) =0, plaa') = pla), and we must have a
minimal factorisation of (aa') of the form (aa') = B(yy) where the co-

domain of B has the same rank as the codomain of «; we have an equation:

Y O\ /T B, Yy
(8 o)) = B o) —
o 1/\o e 0

where (Bai) is a full left factor of (aal) and so, by assumption, is
invertible over RZ; cancelling it over RZ shows that e = 0, which shows
that Py is a faithful projective rank function.

We are left with the last sentence of the theorem; the image of
RZ in Rp is obtained by killing the f.g. projectives of rank zero, which

is the universal localisation of RZ at idempotent matrices, whose kernels
are isomorphic to f.g. projectives of rank O. By 4.6, this is a universal

localisation of R.

It is clear that if R >+ S 1is a ring homomorphism from R to
a simple artinian ring inducing a Sylvester projective rank function p, then
the set of maps I between f.g. projectives over R invertible over S is
factor closed and saturated; therefore RZ embeds in Rp by the last theorem
This remark gives us a useful sufficient condition for a localisation of a
ring at a set of maps full with respect to a Sylvester projective rank function

to embed in the complete localisation.

Lemma 5.9 Let I be a collection of full maps with respect to the Sylvester
projective rank function p over the ring R, and let RZ -+ S be an
embedding into a simple artinian ring such that the composite map from R

to S induces p. Then RZ embeds in Rp.

Proof: Let L be the collection of maps over R that become invertible

over S; then we have the diagram of ring maps:
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R+ R. * R * R

The map from RZ to S 1is an embedding, so R2 embeds in Rf which embeds

in R .
p

We can simplify 5.8 in the case that R 1is a weakly semi-
hereditary ring, since in this gase, it is easily seen that a set of maps
full with respect to a projective rank function are factor closed if and

only if their lower multiplicative closure is factor closed.

Theorem 5.10 Let R be a weakly semihereditary ring with rank function p
1
taking values in ;-Z; let I Dbe a collection of maps full with respect to

p; then R., embeds in Ro if and only if I is factor closed.

)
Proof: It follows from 1.19 that I 1is factor closed if and only if the
lower multiplicative closure of I is factor closed. 5.8 completes the

proof.

Finally, in the case of a faithful rank function on a two sided
hereditary ring, we know by 1.23 that we have unique factorisation of full
maps into finitely many atomic full maps. Consequently, a universal localisa-
tion at a factor closed set of maps is entirely determined by the full maps
that are factors of elements of the factor closed set. Further, if 21,22
are collections of atomic full maps such that any element of one is stably

=R, . So, if we wish to classify
I Iy

associated to an element of the other, R
all the intermediate localisations that embed in the complete one, we can do
so by the sets of stable association classes of atomic maps that are exactly
those inverted in some universal localisation. We shall show next that any

collection is possible.

Theorem 5.11 Let R be an hereditary ring with faithful projective rank

. : . 1 .
function p taking values in ;-z; then the intermediate localisations of
R that embed in the universal localisation Ro are in 1 to 1 correspondence

with collections of stable association classes of atomic full maps.

Proof: We have shown everything except for the result that if I is a
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collection of atoms then any atom invertible in RE is stably associated to
an element of I. In order to deal with this, we look at the maps we defined
in the proof of the K-theory exact sequence of chapter 4 for the universal
localisation R of R. Let T be the category of torsion modules with
respect to this complete localisation; we have a well-defined map fram iso-
morphisms between induced f.g. projectives over R_ to KO(E) and Ko(zp
is the free abelian group on the set of stable association classes of atomic
full maps, and our well-defined map sends a full map R to [coker R].
Suppose that we have an atomic full map o:P + Q such that a_l
exists in RE; then, we have an equation of the Cramer rule type,
a(a_l) = I, which shows that the image of a_l in KO(ED is [- coker ol.

However, by Cramer's rule for R we have an equation:

E’

where R lies in the lower multiplicative closure of I, and R' 1is a
full map. So, the image of a_l is [coker B'] - [coker B]. Therefore,
since our map is well-defined, [coker o] + [coker R'] = [coker R]. Since
each side is a positive sum of generators of a free abelian group, and
[coker o] 1is a generator, it equals one of the generators involved in the
right hand side, which all have the form [coker ai] for o in I; so,

o 1is stably associated to an element of I.

In the course of the proof of the theorems in this chapter, we
have often tried to prove that all the f.g. projectives over a universal
localisation are stably induced; it is often useful to be able to show that
all f.g. projectives are actually induced; we end this chapter with a considera-
tion of this problem.
Let R be a ring with a Sylvester projective rank function p
and let I be a collection of maps between f.g. projectives full with
respect to p; we say that I is factor complete if it is factor closed and
if a and R are maps defined over R such that of lies in I, there

exists a', a map between induced f.g. projectives over RE’ such that

o L, .
(?) is invertible over RE'

Theorem 5.12 Let R be a ring with a Sylvester projective rank function p;
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let I be a lower multiplicatively closed factor complete set of maps between

f.g. projectives; then all f.g. projectives over RZ are induced from R.

Proof: Let e be an idempotent in Mn(RZ); by Cramer's rule, there exists

an equation:

where (a al) e I, (o a'):PO +p @®R" and (o a') is defined over R,
(@ a'):P > P @ R".

Let (a a') = y{(§ §') be a minimal factorisation over R;

. ". n_ § 0 -
y.PO - Q and (S 6"):Q - P ® R ; then (y al) P (a al) so, by
: . ' n
faitzr completeness, there exists (el 52).RZQRP -> RZQRQ & RZ such that
1 L s .
El 52 is invertible.
Counting ranks shows that p(P') = p(Q) + n -~ p(PO) and also that

p{(Q) = p(P) + pz(e); therefore, p(P') = pz(e) + p{(P) + n - p(PO) = pz(e).

We intend to show that there is a map from RZQRPl onto RZ,

and hence that they must be isomorphic since there are no projectives of
rank O by the factor closure of I.

First we rewrite 1 as:

§ O\/I 8 (y a,) (5 6')
(v a) < < o > = L o O
L ‘o 1/\o e

so
(y a,) o 68 (y a) O 6Be
Y < >=0 TN < >=0
O e [¢] e
Y al I 68 o 0
= (I 0) =e
PO El E2 o) I O e
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€ o 1I O e

On the one hand, <1 al) <I 68) (O O) has image Rne since
1 2

Y 0‘l I 68 is invertible; on the other hand, it is a map from
el e2 o] I

RZQR(PO -] P')n vanishing on RZQRPO;
RZQRP' to Re' which completes our proof.

so it defines a surjective map from

We may refine this a little in the case where R is weakly

semihereditary.

Theorem 5.13 Let R be weakly semihereditary with a projective rank function
p; let I be a factor complete collection of maps between f.g. projectives
over R full with respect to p; then the lower multiplicative closure of

I, I, 1is also factor complete and so, all f.g. projectives over RZ are

induced from R.

Proof: It is sufficient to show that if I 1is factor complete then

I, = {<;l 2 ) Po € I} 1is also factor complete; the rest follows by
2

1 5 = O, so by
2 B a2

the weak semihereditary property, there exists a decomposition of

induction. So, suppose that (11)(61 62) = (a 0 > then Y16

codom(yl) = dom(62) so that the product ylaz is trivially O; we rewrite
the above equation with respect to this partition of codom(yl):

Yop Ya2/ \821 S22 8o

Y
11
By factor completeness, there exists Y' and Y" such that (Y ) and

Y11 ©
V22 Y Y
" are invertible: then 21 22 is invertible.
Y y' o
O -Yll
Finally, there is the following special case that we shall need
later on.

Theorem 5.14 Let R be a hereditary ring with a faithful projective rank

function p; let a:Po - Pl be an atomic full map with respect to p such
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that if imo € Q ¢ Pl then ima is a direct summand of Q; then all f.g.

projectives over Ra are induced from R.

Proof: It is enough to show that {a} is factor complete; it is certainly
factor closed, and the remaining part of the definition of factor complete-

ness is trivial.
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6. HOMOMORPHISMS FROM HEREDITARY TO VON NEUMANN REGULAR RINGS

In the last chapter, we investigated the universal localisation
of a ring at a Sylvester rank function taking values in %-z; the resulting
ring is always a perfect ring. Since the degree of nilpotence of the radical
may grow with the integer n, it is likely that if the rank function takes
values in the real numbers, we are not going to be able to say a great deal
about the universal localisation at the rank function in general. This
suggests that rather than investigating epimorphisms we should investigate
homomorphisms, and we shall see that every rank function on an hereditary
ring arises from a homomorphism to a von Neumann regular ring with a rank
function. Under suitable hypotheses we shall be able to show that the
universal localisation at the rank function is von Neumann regular.

In chapter 1, we showed that over a two-~sided xo—hereditary ring
with rank function p, every map factors as a right full followed by a left
full map; we described this as having enough right and left full maps. We
shall require a complementary condition; we say that R has enough full
maps with respect to a Sylvester rank function p 1if every left full map is
a left factor of a full map and every right full map is a right factor of a

full map.

Theorem 6.1 Let R be a ring with a Sylvester rank function p such that
R has enough left full, right full and full maps with respect to p. Then
the universal localisation of R at p, Rp, is a von Neumann regular ring.
All f.g. projectives over R are stably induced from R and the rank
function extends to Rp. The kernel of the homomorphism from R to Rp is

the trace ideal of the f.g. projectives of rank zero.

Proof: We have seen all of this result in 5.1 and 5.2, except for the fact
that Rp is a von Neumann regular ring. To show this, we need to show that

every principal left ideal of Rp is a direct summand of Rp. Let a € Rp,
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then right multiplication by a is stably associated to some map Rp@Ra,
where o:P -+ Q is a map defined over R. o = By, where £ 1is right full
and y 1is left full. Since 8 1is right full, it is a right factor of some
full map which has an inverse over Rp, so RpﬁRB has a left inverse,

that is, it is a split surjection. Similarly, Rp@Ry has a right inverse,

and must be a split injection. The consequence of this is that the image of
RpﬁRa is a direct summand of RDQRQ, and so, the cokernel of RpﬁRa is f.g.
projective. This is the cokernel of right multiplication by a, however, so

Rpa is a direct summand of Rp as we wished to show.

Of course, it may be hard to check whether there are enough full
maps; however, we have already seen that over an xo-hereditary ring there
are enough right and left full maps. We should like to be able to embed any
k-algebra with a Sylvester rank function p honestly in another k-algebra
with a Sylvester rank function such that the second k-algebra has enough
full maps. It turns out that we can do this by adjoining a large number of

generic maps.

Theorem 6.2 Let R be a k-algebra with a Sylvester rank function p taking
values in the reals; then the embedding of R in R f k<X>, where X is
an infinite set is an honest map for the rank functions p on R, and
(p,r) on the coproduct R f k<X>, where r is the unique rank function
on k<X>, Further, R % k<X> has enough full maps with respect to (p,r).
Proof: Since all projectives are induced from R, we take liberties with
the notation by writing P for (R B k<x>)QRP, and p for (p,r). The
idea of the proof is a fairly simple one; let o:P -+ Q be a left full map
with respect to p, defined over Ruﬁ k<X>. Then it is actually defined
over R f k<Y>, where Y 1is a finite subsgset of X. We may use the elements
of X-Y to define a generic map from Q to P over R ; k<X> and the
composition of this with o should be a full map with respect to p, since
any other answer would involve some kind of degeneracy. A dual argument deals
with right full maps.

There is some integer n such that both P and Q are n-
generator projectives, and neither is of rank n with respect to p; so
there are idempotents e, e, in Mn(R) such that Rnep Zp, and R%_ =g

Q Q
so that our left full map oa:P - Q may be represented by a matrix
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a e Mn(R f k<Y¥>) such that ePa =a = aeQ. For convenience in writing the

proof, we pass by Morita equivalence to the ring

Mn(Ri k<y>) lﬁ k[x] = M (R‘—’ k<y> \]—(' k<xij>), where i,j =11, and

k

and R U k[x] is called S. This may be regarded as a subring of

Mn(R R k<X>) by identifying the set {xij: i,j = 1 > n} with some subset

the map sends x to the matrlx (mij). We call the ring Mn(R [ k<Y>)Rl,

of X - Y. The rank function p induces by Morita equivalence, a rank
function pn on Mn(R ﬁ k<X>) which in turn induces rank functions that we
shall still call pn on Rl and S, and all maps mentioned above are
honest since all maps represent one ring as a factor in a coproduct over k

of the other. P (R e ), p (RleQ) < 1 since, by Morita equivalence, they
must be respectlvely p(P)/n and p(Q)/n. The element a represents the

left full map a:P -+ Q so that right multiplication by a is a left full

map with respect to pn from RleP to RleQ' and since the embedding of
RleQ in Rl is split injective and so left full, right multiplication by
a defines a left full map from RleP to Rl; so for all left ideals of
fos S
Rl containing a, pn(I) 2 p (Rlep).
Over the ring § = Rl ﬁ k[x] the map xeP is a kind of generic

map from Rl to RleP so we consider the map axeP from SeP to itself,

which we intend to show is a full map over S; once we have this, we know

that it defines a full map over Mn(R i k<X>) by our remark that the inclu-

sion is honest, and so the map Morita equivalent to it over R ; k<X> 1is a
full map having a:P » Q as a left factor. In order to deal with this, we
shall need the details of the coproduct theorems.

What we need to show is that any f.g. left ideal inside SeP
containing axe, has generating number at least pn(SeP) with respect to
pn. Let M be such a submodule of Sep; then, if gp M) < p (Se ) <1,

we find that in the decomposition given by 2.7, M & SQkMO ® SQ M e Sgk[ ] 2,
l

where we take RO of 2.7 to be k, Rl to be Rl and R2 to be k[x],

MO and M2 must be O, for if not the generating number of M would be

greater than 1 by 3.3. Therefore, M = SQR Ml
1
We choose the basis l,x,x2,..... for k[x] and order it by

l<x<x2<....; we well-order some basis for Rl over k containing the

element eP as smallest element. Then by theorem 2.7, Ml is the Rl—sub-

module of M consisting of the elements whose l-support does not contain

the 1-leading term of some non-l-pure element of M; if axeP € Ml’ its
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l-support xeP must be the l~leading term of some non-l-pure element of M,
and the nature of the ordering of k[x] forces the form of this element to

be xe_ + r where r lies in R.e However, M is empty, so xeP + r

P 1 1 1P’ 2 1
does not lie in M2 and we see that e, must lie in M. For, some element
in the 2-support of xeP + r, must be the 2~-leading term of some non-2-pure

element of M. If this 2-leading term is eP, the element must actually be

eP since we chose eP to be the smallest element of a basis cf Rl. In

the contrary case we reduce the support of r obtaining xe_ + r_. The

1 P 2
same argument applies but we cannot produce an infinite sequence of terms
xeP + rn where the maximal element in the support of rn continues to
decrease since our ordering is a well-ordering, so eventually eP is forced
to be in M, and therefore gpn(M) = pn(SeP).

This leaves the case that axeP lies in Ml; we recall from

theorem 2.6 that the structure of SeP as an Rl—module has the form

RleP ® RlxeP ® B, where B 1is a basic module. We project Ml onto the
direct summand RlxeP according to this decomposition. RlxeP is a free

module on the generator xeP; the image of Ml contains axeP; we have

already noted that any left Rl ideal containing a has generating number

e ) = . .
at least pn(Rl P) pn(SeP), since a defines a left full map from RleP

to Rl; so the generating number of Ml is at least pn(RleP) and so by
3.3 the generating number of M is at least pn(RleP)' which is just
pn(sep), so that axeP must be a full map, as we wished to show.

This shows that every left full map over R g k<x> 1is a left
factor of a full map; the dual result must hold for right full maps by a dual

argument.
An immediate corollary of 6.1 and 6.2 is the following theorem.

Theorem 6.3 Let R be an Xo—hereditary k-algebra with a rank function o
taking values in the real numbers; then there is an honest map from R to a

von Neumann regular ring V with a rank function pv.

Proof: First of all, we form the ring coproduct R i k<X> which is X~
hereditary by the remarks after 2.10, so, by 1.16, it has enough right and
left full maps; by 6.2, it has enough full maps. Therefore, by 6.1, the
universal localisation of R f k<X> at the rank function p is a von
Neumann regular ring V. The map R =+ R i k<X> and the map R i k<X> =+ V

are both honest, so their composite is also honest.
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We can say a little about the monoid of f.g. projectives of V,

when it is constructed in the manner used in 6.3.

Theorem 6.4 Let R be a ring with a Sylvester rank function p whose
image is the subgroup A of the additive reals. Let V Dbe the universal
localisation of R ﬁ k<X> at the rank function p extended to R ; k<X>;
then Pe(V) is naturally identified with the positive cone of A.

Proof: Certainly, the image of p on V 1is the image of p on R ; k<X>
by theorem 5.1, which is the image of p on R. The rank function induces
a map from Pe(v) to the positive cone of A, which we wish to show is an
isomorphism.

Suppose that P and Q are f.g. projectives over V such that
OV(P) < oV(Q); then there are idempotents eP and eQ in Mn(V) where
n 1is a suitable integer larger than OV(P) such that VneP =P, and
VneQ = Q. e, and eQ must lie in (R ﬁ k<Y>)o for some finite subset Y
of X.

We look at the ring
§ =M (RY key>) o k[x] = M (R k<Y>) ; k<xij>) as in the last
theorem, which may be defined to be a subring of Mn(V) such that the
inclusion of it in Mn(v) is honest by taking {xij} to be a subset of
X - Y. The map from SeP to SeQ given by right multiplication by ereQ
is seen to be a full map by the argument of 6.2, if oV(P) = pV(Q); it is
left full if oV(P) < oV(Q). Full maps become isomorphisms over V, and
left full maps become split injective, so we see that if P and Q are f.g.
projectives of the same rank over V, they are isomorphic, whilst if P has
rank less than that of Q it is a direct summand of Q. The first statement
shows that the map from Pe(v) to the positive cone of A 1is injective;
since all elements of A are differences of elements of the image of Pe(v),

the second statement shows that the map is surjective.
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7. HOMOMORPHISMS FROM RINGS TO SIMPLE ARTINIAN RINGS

Introduction

Now that we have studied special homomorphisms from hereditary
rings to simple artinian rings, we are in a good position to study all poss-
ible homomorphisms from an arbitrary ring to simple artinian rings. In order
to see what type of theory to look for, we should look at the special case
of homomorphisms from an arbitrary ring to skew fields, which were classified
by Cohn in chapter 7 of (Cohn 71).

First of all, given a homomorphism ¢:R =+ F from a ring R to
a skew field F, we can talk of the skew subfield of F generated by R;
then we regard two homomorphisms ¢i:R > Fi’ i=1,2, as equivalent if the
skew subfields of Fi are isomorphic as R-rings. We should like to be able
to characterise the equivalence classes in some way; this we do by using the
notion of the singular kernel of the homomorphism ¢:R + F; this is the set
of square matrices over R that are singular over F. Such a set of matrices

P must satisfy the following axioms;

1/ it includes all non-full matrices; these are the n by n matrices for
arbitrary n, that can be written as the product of an n by (n-1) and

an (n-1) by n matrix;

2/ 1 ¢ p;
A O s
3/ (0 B) e P if and only if A or B € P;
4/ if pn= (a,.) and B= (b,.), A,Be P, and a,, =b,, i #k, then
1] 1j 1] 1)
= i=zk = + : imi
(cij) € P where cij aij for , and ckj akj bkj' similarly,
if a,,=Db,, j#k, then (d4,,) e P, where d,,K =a,, for j # k and
ij ij ij ij ij
[«} = a + b, .

ik ik ik

Any set of matrices over a ring satisfying axioms 1 to 4 is called

a prime matrix ideal; Cohn showed that the equivalence classes of homomorphisms
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from a ring to skew fields are in 1 to 1 correspondence to prime matrix
ideals, where an equivalence class is paired with the associated singular
kernel. We shall present a proof of these results later in this chapter.

There are two problems involved in a generalisation of this
theory: first of all, we cannot talk of the simple artinian subring of a
simple artinian ring generated by a subring since there need not be a unique
minimal simple artinian ring containing a given subring; therefore, we shall
have to find a new way to define an equivalence relation on homomorphisms
from a ring to simple artinian rings; secondly, we must find some analogue
of the prime matrix ideals that applies to simple artinian rings and not just
to skew fields.

The first problem can be met in a fairly simple way; Bergman
proposed that two homomorphisms ¢i:R > Si’ i=1,2, where Si is simple

artinian, should be regarded as equivalent if there is a commutative diagram:

where S 1is simple artinian. If there is such a commutative diagram, we
write ¢l ~ ¢2. This relation reduces to the standard one if Si is a skew

field. This is easily shown to be an equivalence relation using the simple

artinian coproduct.
Lemma 7.1 ~ is an equivalence relation.

Proof: Certainly, it is reflexive and symmetric by definition. If we have

homomorphisms ¢i:R > Si’ i=1+to 3, and ¢l~'¢2, ¢2 ~ ¢3, we construct

a commutative diagram of ring homomorphisms:



96

R/ % \

from which it is clear that ~ 1is also a transitive relation.

Next, we have to see what concept should replace the prime matrix
ideal. Here, we use an idea due, in the case of homomorphisms from a ring to
skew fields, to Malcolmson (80). If we have a homomorphism ¢:R + § = Mn(E),
where E 1is a skew field, we can define a rank on f.p. modules over R by
the formula p(M) = os(MﬂRS), which takes values in %-Z. Such a rank
function must satisfy the following axioms, which simply express that QRS

is a right exact functor:

1/ o®h =1
2/ p(A ® B) = p(A) + p(B);
3/ if A+ B+ C =+ 0 is an exact sequence, p{C) < p(B) < p(A) + p(C).

A rank function on f.p. modules satisfying these axioms is called a Sylvester

module rank function. Malcolmson (80) showed that a Sylvester module rank

function taking values in Z 1is equivalent information on the ring to a
prime matrix ideal. The main theorem of this chapter is that the equivalence
classes of homomorphisms from a k-algebra to simple artinian rings are in 1
to 1 correspondence Sylvester module rank functions taking values in %-z

for some n.

In order to prove this theorem and also to show how the notion of
a prime matrix ideal links with the concept of a Sylvester module rank func-
tion, we need another type of rank. A homomorphism from a ring R to a simple
artinian ring S also determines a rank on maps between f.g. projectives;
if oa:P >+ Q 1is a map between f.g. projectives over R, we define
pla) = ps(aﬂRS) where ps(B) for a map B between f.g. modules over S
is the rank as S-module of the image. A rank on maps induced by a homomorphism

to a simple artinian ring must satisfy the following axioms:
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1/ D(Il) = 1;
2/ o(é g)
3/ o(z g) pla) + p(B);
4/ p(aB) < pla), p(B).

pla) + p(B);

v

A rank function on maps satisfying these axioms is called a Sylvester map
rank function.

The notion of a Sylvester map rank function is equivalent to
that of a Sylvester module rank function in the following way. First, we
suppose that we have a Sylvester map rank function, p; we extend this to
a Sylvester module rank function by p(coker a) = p(IQ) - p(a) for a map
o:P + Q; next, we suppose that we have a Sylvester module rank function,

p, from which we define a Sylvester map rank function by

p(a) = p(Q) - p(coker o) for a map a:P + Q. It is not hard to check that
these functions are well-defined and satisfy the axioms required. As we have
seen, Sylvester module and map rank functions are equivalent notions; we

shall therefore usually refer to a Sylvester rank function, p, which is

defined on f.p. modules and on maps between f.g. projectives and restricts
respectively to a Sylvester module and a Sylvester map rank function.

In certain situations, we shall be able to construct a rank
function on matrices taking values in %-Z for some n that satisfies axioms
1 to 4 for a Sylvester map rank function; we shall call such a function a

Sylvester matrix rank function. There is the following useful observation.

Lemma 7.2 A Sylvester matrix rank function extends uniquely to a Sylvester
map rank function, having values in the same subset of the additive group

of R.

Proof: Given a Sylvester matrix rank function, p, we define a Sylvester
module rank function by p(coker A) =n - p(A), where A:mR -+ nR. That
this defineg a Sylvester module rank function is the same proof as was needed
to show that a Sylvester map rank function determines a Sylvester module rank
function. In turn, the Sylvester module rank function determines a Sylvester

map rank function that extends the Sylvester matrix rank function.

This allows us to see the equivalence between prime matrix ideals

and Sylvester rank functions taking values in Z in the following way. We
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construct from the prime matrix ideal, P, a Sylvester matrix rank function
by defining p(A) = n, where n 1is the maximal integer such that A con-
tains an n by n minor not in P; this determines a Sylvester rank func-
tion as we discussed before. Conversely, if we have a Sylvester rank function,
p, which takes values in Z we may define a prime matrix ideal by

P=1{A: p(A) <n, where A isan n by n matrix}. We shall leave the

checking of the details to the reader.

Characterising the homomorphism by the rank function

We take our first step by describing our previous equivalence
relation on homomorphisms to simple artinian rings by the associated Sylvester
map rank functions. In order to do this, we need to find out more exactly
what a Sylvester map rank function induced by a homomorphism from R to a
simple artinian ring S tells us about the functor QRS.

We have already seen that a Sylvester map rank function determines
a Sylvester module rank function, and it is clear that this is the Sylvester
module rank function induced by the homomorphism from R to S, for if M
is an f.p. module over R with presentation P 8 Q-+ M-> 0O, then denoting
the Sylvester map and module rank functions induced by the homomorphism from
R to S by p, we have the equation p(a) + p(M) = p(Q) = p(IQ). We can
further determine the rank of M@RS for an arbitrary f.g. module M over
R in terms of the Sylvester module rank function. For every f.g. module M
can be represented as the direct limit of a family of f.p. modules {Ni}
where all the maps are surjective, and the rank of MQRS is equal to the
minimal rank of some NiQRS, that is, the minimal value of D(Ni).

Given a map between f.g. modules a:M + N, we may determine the
rank of a@RS by the formula p(aQRs) = p (coker uQRS) = p(NQRS). Finally,
if we have a map a:M + N where only M is f.g., we can determine the rank
of aQRS in the following way; we write N as the directed union of all the
f.g. submodules of N that contain the image of a, N = gNj; then the rank
of aQRS is the minimal rank of the maps from M to Nj for varying Jj
induced by o from M to N.

We see that if two homomorphisms ¢1:R + S and ¢2:R > S

1 2
induce the same Sylvester map rank function, then they must agree numerically
in all the ways determined above; as we shall see this happens because there

is a commutative diagram of ring homomorphisms:
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where S3 is simple artinian.

Theorem 7.3 Let R be a ring with two homomorphisms ¢1:R > sl and

5 from R to artinian rings sl and S2 that induce the same

Sylvester map rank functions; then there is a commutative diagram:

/ S3
52

¢2:R -+ S

/\

where s3 is simple artinian. Conversely, if there is such a commutative

diagranm, Sl and S2 induce the same Sylvester map rank function on R.
Proof: The last sentence is clear, since they must both induce the same
Sylvester map rank function as S3.

We wish to find a non-zero homomorphism from the ring sl d s2
to a simple artinian ring. At first sight, this appears a hopeless task
until one notices that this is an hereditary ring, as will become clear in
a moment., After that, it is simply a matter of showing that the ring has
unbounded generating number.

In order to study the ring, we consider the upper triangular
matrix ring T = (sl slﬂRsz>

o S2 .

I1f we adjoin the universal inverse to the map o from o O >

e
to (sl sleRs£> defined by left multiplication by (o 1@R1> the ring
o o o o
we obtain is isomorphic to Mz(sl E SZ)’ as we saw in 4.10. Consequently,
s, v S2 is hereditary, and by 5.1, it has a rank function (which must be

1R
unique) when this map is full with respect to the rank function on T, o,
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1 1
o s

that assigns the rank % to both (O o] > and (S s QRS%>' If this
o
1 o

happens, the universal localisation of Ta at the rank function is simple
artinian by 5.5; but this is a universal localisation of M2(Sl i Sz);

therefore, Sl § 82 has a simple artinian universal localisation. So, it

remains to show that a is a full map with respect to op.

First of all, we show SlQRS2 is not zero. The rank of the map
¢1:R -> Sl as a map of R-modules is 1, where by rank, we mean the rank func-

tion induced by the homomorphisms to Sl and Sz;
ing the map obtained from it by tensoring over R with Sl; we find

- -> -
¢lQRSl.Sl SlQRSl,
identity map, so the rank of ¢l must be 1. Therefore, the map ¢lﬁ

we show this by consider-

composing with the multiplication map gives us the
RSZ also

has rank 1 over S in particular S QRS is non-zero.

2} 1°r"2
We wish to show that & is a full map with respect to p. 1In
order to do this, we need to show that the minimal rank with respect to p

of an f.g. projective submodule of Sl SlﬂRS2 containing the image of

[¢) [¢)

a is %. So, we need to know what the submodules of Sl Sl 82 look

[¢) [¢)

like. We leave it as an easy exercise for the reader to show that such a

submodule M takes the form <eSl eSlQRsz> ® <O M> where M is an
o] o] o] o]
Sz-complement of eSlQRSi in SlQRsz.

Consequently, its rank is equal to &ol(esl) + &pz(M) where
oi is the rank of Si modules over Si'
Suppose that there is some submodule (eSl eSlQRSZ> @ /0 M)
o (o] o o]

of (Sl SlQRS%> containing the image of & such that it has rank q less

o] o]
than %. Then consider the map Y:R = (l—e)Sl which sends 1 to 1l-e; over
S i : - i
, We find that the rank of YQRsz 82 + (1 e)SlﬁRS2 is at most
2(q - %Dl(eSl)), since the image of 82 lies in the image of M under left

multiplication by (l.e). So, the rank of YQRSl:Sl -> (l—e)SlaRSl is equal
to the rank of YﬁRsz which is at most 2(g ~ &pl(esl)).
That is, the image of Sl under YQRSl in (l—e)SlaRSl lies

in some submodule Ml of rank over Sl at most 2(g - &pl(esl)); therefore,
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o] lQRSl lies in eSl eSlQRSl ® /O Ml , inside the ring
o) [¢) [¢] [¢] o O
S S.®@ S.\. This shows that the rank of the map defined by left

multplication by o lQRl from o o to S s @S with

(e} (¢] (¢] S (¢] (¢]
respect to the rank function that assigns these modules the rank % is at

most g, since its image lies in eSl eSlQRSl &[0 Ml whose rank

[¢] [¢) o O
with respect to this rank function is at most %pl(esl) +q - %pl(esl) = qg.
However, it must be full, since it becomes invertible under the homomorphism

to M2(Sl) given by Sl SlQRSl Sl Sl where the map from S

[¢) S > S S
1 1 1

QRS to S

1 1 1

is the multiplication map.
Therefore, we have a contradiction if we assume that o is not

a full map. So, Ta = M2(Sl ; 52) has a unique rank function by 5.2, and

the universal localisation of Sl ; 52 is a simple artinian ring, which we
call the simple artinian coproduct of Sl and 52 amalgamating R, and

i o
write as Sl R 52.

Universal localisation and Sylvester rank functions

Our method for constructing homomorphisms from a ring to suitable
simple artinian rings will be to adjoin the universal inverses to some set
of maps between f.g. projectives; provided there are enough maps of a suitable
sort the ring we shall obtain will be local with simple artinian residue ring.
In order to prove these results, we shall need to investigate ways of extend-
ing Sylvester module and map rank functions from a ring to a universal
localisation of the ring. This theory allows us to prove Cohn's results on
homomorphisms from a ring to skew fields which we shall need in preparation

for the general case.

Theorem 7.4 Let R be a ring with a Sylvester rank function, p; let I

be a collection of maps between f.g. projectives over R whose rank is equal
to the rank of the identity map on the domain and codomain. Then, the
universal localisation of R at I, RE' does not vanish, and the Sylvester

map rank function on R extends to a Sylvester map rank function on R, QE'
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that takes values in the subgroup of the reals that p does.

Proof: Once we show how to extend p to RZ' and show that this extension

is well-defined, it follows that RZ does not vanish.

First, we note that we can assume that I 1is upper multiplicat-
ively closed, since the rank of all elements of the upper multiplicative
closure of I 1is equal to the rank of the domain and codomain.

As we have done in similar situations, we define the extension
of p to RZ by Cramer's rule, and then, we show that it is well-defined
by Malcolmson's criterion.
® O be a map between f.g. induced projective

I R

modules over RZ’ Then, by Cramer's rule, there is an equation:

: -
Let B.RZQRP R

We attempt to define pZ(B) by pZ(B) = p{o a') - p(P'). Suppose that we

have two equations of the above form:

I,, 8 I B
(o o) (P l)=(aa') Py (P 2)=(yy')
o 8 o B

Then,

oo 0] O
ovivy |y
1 1

so, by Malcolmson's criterion, there is an equation

@ a O o o o a' )
o v, Yy vy, 0 o |« ",
oo oo & o |o k=l u Jov
o o} o} 62 e2 Hy
o0 01 € O o/ o

From this, we construct two equations:
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¢4 al O O [¢] [¢] [¢] ul o
L} 1]
°© vy, ¥y v, O © Wy | Y (v 0)
. = (]

1 o O (o} 61 (o} u3 (o} | I
o) o o & |, w | ©
© o0 o1 ¢ O o o ’o

and

o al o O 6] 6] =o'
o Y. Y m o o0

2. (o} (o]

61 o] ]

o] [¢] Ol 62 "€,
o O O I El (o} (o]

Note that if X1 lies in S, then p(;l 2 ) = p(Xl) + p(xz), for arbitrary
2

¢, since by axiom 4 for a Sylvester map rank function, it is at least that,

() 966 %)

so that axiom 2 shows that it cannot be greater. A similar argument applies

whilst

X; ¢ ; ' . XX, ©
to show that p{2l = plx,) + p(x,) for arbitrary ¢'. Since 172
o x, 1 2 0“1

; : Xy I =
is associated to <02 Xl), we deduce that p(xlxz) p(xz) whenever X1 X5

is defined, and Xl € ZI.
So, p(LHS1l) = 0(61) + p(62) + p{(P) + p(aal) + p(yy"'); whilst
p(LHS2) = p(él) + p(62) + p(P) + p(yyl) + plaa').

But p(RHS1) = p{(RHS2), since both g; g) and g ;f) lie in
Z; so, p(RHSL) = p(LHS1l) = p(LHS2) = p(RHS2). o, plaa') - p(aal) is
equal to p(yy') - p(yyl), from which it is clear that p is well-defined.

We have to be careful what we mean at this point since this rank function is

not as yet defined on association classes of maps over RZ but only up to
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multiplication by invertible maps over R on the left. We shall however
show that our rank function defined on maps between induced f.g. projectives
over RE satisfies axioms 1 to 4 for a Sylvester rank function from which
it follows that it is well-defined on association classes of maps over RZ.
It follows that it extends to a Sylvester map rank function since it restricts
to a Sylvester matrix rank function and so it extends to a Sylvester map
rank function by lemma 7.2,
Axioms 1 and 3 are clear, so we are left with 2 and 4 which are

rather less obvious.

First, we show that pz<éQ Z%) = pz(a) + p(Q), for arbitrary

a. .
1
Suppose that we have equations:
= Iy
then,
o
2,
00 o I °
Y Y, I 3 o I »
00 | BB I 8 i 8!
L 0 2
o
We note that /I o o a" is associated to I o 0 a"
Q2 Q2
[¢] I [¢] o [¢] I [¢] a'
Q3 1 2
o o I a' o o I a
Ql Q3 1
O o o o o o o o

™ <

I a
Q
so that p 3 1 =p YT 0
z 00 B8
o o

since (yyl) is in I. This equals p(Q3) + pz(a) as we stated.

) - p(9,00)) = plyy)) *+ p(B8") - 0(0 €0,)

Next, we show that pz(aB) < pz(a), pZ(B) when a 1is an induced
map. Also, we shall show that if o is in I, then pz(aB) = pZ(B).
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Let o0:P_ > P be an induced map over RZ' and let B:Pl -+ P

(o] 1 2
be a map between induced projectives over R.. Then op_{(aB) + p{(P.)
p, P I B -Ip
=p 1 = pZ 1 = pZ 1], where the last equations arise from
O oB -a O o o

multiplication on the left by invertible maps over R.

I, 8

£ (yyp [T = (ry") then
o B
Yy, o I,, 8,0 Yyl Ioe ONf I “Y\ /Y Y' ©
1 OP Bl ~1) = . Q Q L where Q'
00 I (o] O a [e3Xe} o (o] o (o] I 0] I
P
%o 1 Py
is the domain of (yyl).
B -I Yy ooy
So, py = p - p(P') S pla) +p(Q") - p(P"),
O o O 0 o
o{yy") + p(Pl) - p(P'). Since (yyl) is in I, p(Q') = p(yyl) = p(P') + p(Pl).
Therefore, we see that pla) + p(Q') - p(P') = p(a) + p(Pl).
B ~I

So, oz(aB) + o(P < oz(a) + o(Pl), oZ(B) + o(Pl) as

l) = pZ O o
we want.

If we assume a is in I,

B -y _ (YY" -vy} _ "o , _ ,
DZC) oc)’p(oo al> p(P') = plyy") + pla) - p(P")

-1
= p(a) + pZ(B) = p(Pl) + pZ(B). Hence, pz(aB) = pz<g a) - p(Pl) = DZ(B)'

In general, suppose that we have maps over R between induced

f.g. projectives a:PO -+~ P, and B:P. » P_. Suppose that we have an equa~

1 1 2
tion:
I o
Pl
(v ¥y) = {ry"
O a
I a, B I a.B I_0
then p(I) + p_{aB) = p Pl prly ¥ P - pely ¥") F
P ) L b L
O aB 0 [o13] 0 B
< pz(YY') » p{P) + p.(B) so p.(aB) < plyy') - o(P) = p, (o), and

DZ(GB) < DZ(B) which is axiom 2.

Let al,az and B be maps over RZ between induced f.g.
projectives such that gl g ) is defined. Suppose that we have two equa~
2

tions:
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P c1‘| IP uII
(v ) 1 = (ry") , (88 2 = (88"
(¢] al (¢] a2
Then
a. 0 1 O ¢ soo s\ /1 ©° ¢
+ p (P.OP,) = D ' ot o
Pz 6 pIE B = Py 00a O Py o o Jlooa o
2 008 a Y 008 «a
2 2
§ 0 618 §!' Yyy' 0O
= pZ = pz so that the problem reduces to the

Oy y' O 06888

case where a.,a
1’72

So, suppose that we have an equation:

are induced maps.

I8

(e e.) P (e e')
Y'lo 8
o, O IP Bl e O El IP °© 0
then pz 5 + p(P) = pZ (o} al o = pZ 510 (o} al o
2 o B a2 O B a2
€ e' ea a, O O o l o] o]
172 1
=p =q L =p > p(al) + p(az) + p(IP)
L}
0 a o] €' e gq, e € e.) IP o]
1 O a

which proves axiom 4.

We have shown that our rank function defined on maps between
induced f.g. projectives satisfies the axioms of a Sylvester map rank function.
It follows that it extends uniquely to a Sylvester map rank function as we

have outlined before.

In the case where the Sylvester map rank function on R takes
values in %, we can say a great deal about the universal localisation of
R at all the maps between f.g. projectives whose rank is equal to the rank
of the identity map on the domain and codomain. In fact, we obtain Cohn's

classification of homomorphisms to skew fields.

Theorem 7.5 Let R be a ring with a Sylvester rank function p taking

values in Z; then the universal localisation of R at I, the collection
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of those maps between f.g. projectives whose rank is equal to the rank of

the domain and codomain is a local ring whose residue ring is a skew field.
The kernel of the map from R to the residue ring consists of those elements
which define maps of rank O. Therefore, the equivalence classes of maps
from R to skew fields are in 1 to 1 correspondence with the Sylvester rank
functions taking values in Z, or equivalently, with the prime matrix

ideals.

Proof: By the last theorem, we know that RZ exists and p 1induces a

Sylvester rank function on R taking values in Z. Let I be the subset

z
of R consisting of those elements whose rank is O; then it is an additive

subgroup because a +b = (11) fa © 1\ and it is closed under

O b 1

multiplication so it is an ideal.

If X is not in I, its rank is 1. Let (o al) ; i = (aa')
be some equation given by Cramer's rule; then because x has rank 1, (o a')
must be in . So, x is invertible.

So, as we stated RZ is a local ring with maximal ideal I, and
RZ/I is a skew field. Clearly, the Sylvester map rank function induced by the
map R - RZ/I is the one we began with. Conversely, if we start with a homo-
morphism from R to a skew field, R =+ F, inducing a Sylvester map rank
function p, there is a map from RZ to F extending the map from R to
F, and the kernel of this map is I, for if a is in I, and a has non-
zero image in F, we consider some equation given by Cramer's rule:
[} al) (; i) = (a a'). Since a has non-zero image in F, the left hand
side is invertible over F and so must be the right hand side; however, the
right hand side is not invertible, since its rank given by the map rank func-
tion induced by the homomorphism from R to F 1is not equal to the rank of
the identity map on its domain and codomain. We have a contradiction, so I
lies in the kernel of the map from RZ to F. Therefore, RZ/I embeds in
F as the skew subfield of F generated by the image of R.

The remark on the kernel of the map from R to F 1is trivial,

since the map from R to F induces the Sylvester rank function op.

Ring coproducts and rank functions

In this section, we shall show how Sylvester module and map rank

functions on a k-algebra R may be extended to Sylvester module and map rank
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functions on the ring Mn(k) i R. This will allow us to show that every
Sylvester module rank function on a k-algebra arises from a homomorphism to
a simple artinian ring by showing that the Sylvester module rank function
taking values in %—Z extends to a Sylvester module rank function on
Mn(k) i R also taking values in %-Z; Mn(k) i R 1is isomorphic to Mn(R')
for some R' and by Morita equivalence there is a Sylvester module rank
function on R' taking values in Z; we have shown that this is induced by
a homomorphism to a skew field, F, and this shows that the original rank
function must be induced by the homomorphisms: R - Mn(k) % R > Mn(R') -> Mn(F).
It remains to find a way of extending the Sylvester map rank
function on R to one on Mn(k) : R. The idea is to mimic what we know the
result would have to be if there were a homomorphism from R to a simple
artinian ring S inducing our Sylvester map rank function. In this case, we

have homomorphisms: Mn(k) i R - Mn(k) P d Mn(k) o S, which induce a

k
Sylvester map rank function on Mn(k) i R extending that on R. Given a
map o:P - Q between f.g. projective modules over Mn(k) i R, the rank of

uQ(Mn(k) i S) is the minimal rank of an f.g. projective module over
Mn(k) i S containing the image of uQ(Mn(k) i S). It is hoped that this
discussion will help to motivate the definition we shall propose later on
for the map rank function on Mn(k) i R.

Unfortunately, before we can begin, we need to go through a
certain amount of technical work on coproducts over a skew field. Rather than
referring the reader to an earlier chapter, we shall reproduce some of the

definitions here; also, we shall prove one of the coproduct theorems here,

since it is precisely the technical details of the proof that we need to

examine.

Let RO be a skew field and {RA:A uA} a family of Ro—rings.
set M = Au{0}. We form the ring coproduct R =‘§ RA and consider an
induced module which has the form N = @ NUQR R. For each A, we choose a

u u
right basis over RO of the form {1} uT for the ring RA’ and for each
U, we choose a basis over R, S, for N . Write S =yS , and T = UT,.
o' u u u M XA
If t e TA’ it is associated to XA; if S ¢ SA’ it is associated to A;
if s ¢ SO, it is associated to no index. A monomial is an element of S or
a formal product StltZ"'tn , S € S and ti ¢ T such that no two successive

terms are associated to the same index. Let U be the set of monomials; an

element of U 1is associated to X if and only if its last factor (in S or
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T) 1is associated to XA. Every element of U is associated to some index
except for the elements of SO. We denote by UNX those elements that are

not associated to A. We recall again without proof theorem 2.4.

Theorem 2.4 Let all terms be as above., Then a right basis for N over RO
is the set U. For each A, N 1is the direct sum as RX module of NX
and a free RX module on the basis UNX'

Given A and u € U~x’ we denote by cxu:N > Rx the Rx
linear right 'coefficient of u' map given by the decomposition of the
theorem. For u € U, we denote by cOu:N > RO the RO linear ‘'right co-
efficient of u' map given by the decomposition of N as RO module in
the theorem. For X € A, the A-support of an element x of N is the
finite set of monomials in UNX such that ch(x) is not O; x has

empty A-support if and only if it lies in N The O-support (or support)

x
of an element X consists of those monomials such that cOu(x) is not O.

The degree of a monomial stl...tn is (n + 1), and the degree
of an element s of S 1is 1. The degree of an element of N is the
maximal degree of an element in its support. We define an element x in N
to be A-pure if all the monomials in its support of maximal degree are
associated to the index A, It is O-pure if and only if it is not A-pure

for any index in A.

We well-order the sets S and T in some way, and then we well-
order U by degree and then lexicographically reading from left to right.
Next, we well-order M, making O the least element. We well-order M x U
first by the degree of the second factor, and afterwards lexicographically
from left to right. Let H be the set of almost everywhere zero functions
from M x U to M well-ordered lexicographically reading from highest to
lowest in M x U,

Given any element X in N, its leading term is the largest
element in its support; its A-leading term is the maximal element in its A-
support (if it has any).

Given a homomorphism of f.g. induced modules a:g MuQRR -+ N, we

wish to find an isomorphism B: & M;QR R » 3 MuﬂR R of induced modules such
U M
that the image of o 1is isomorphic to g (aB)M&QR R. It turns out that we

W
may find such an isomorphism composed of transvections and free transfer
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maps. In order to present the proof, we introduce following Bergman the
notion of a well-positioned family of submodules of N.

A family of Ru submodules of N, {Lu} is said to be well-
positioned if and only if the following conditions are satisfied:

Au: YueM, all elements of Lu are u-pure;

Bu1u2: the ul-support of Lul contains no monomial u which is also the
ul-leading term of scme non-y, -pure element xa, x in L , a in R, and
. o)

if ul = u2, deg xa > deg x.

It is not hard to show that if {Lu} is a well-positioned family
ZLuR is naturally isomorphic to & L QR R. The idea for the construction
u
of the isomorphism is that if {a(Mu): e M} is not a well-positioned family,

we find some free transfer or transvection Bl:g M' QR R » % MugR R so that

U
{asl(Mﬂ): u € M} is a 'better positioned' family; by using the wegl-ordering,
we can make sure that this process terminates and so, it gives us the iso-

morphism that we were looking for.

Theorem 7.6 Let o: @ MugR R - N be a homomorphism of f.g. induced modules,

- U

where N 1is as described above. Then, there is an isomorphism of induced

modules B: ® M'® R >~ ® M ® R which is a finite composition of free
UURu H uR

transfers and transvections such that {aB(ML):u € M} is a well-positioned

family of submodules of N.

Proof: We associate to the map o a function ha:M x U > {0,1} by
h(u,u) =§{1, if u is in the u-support of a(Mu);

O, otherwise.
This is an almost everywhere zero function since Mu is f.g. and is non~-

trivial for only finitely many u.

Suppose that a(MA ) is not Al-pure for some Al; then there
1
is some a(x) in a(M) with Al-leading term u such that cy u(x) = 1;
1
the map c¢:M »> R is an R split surjection; so, M = ker ¢ @ xR
Al Al Al Al Al

where XRA is free of rank 1. We perform the free transfer between
1

] t = 2 . .
% MugR R and @ MuQRuR, where MA MA for A Al' MO

It is the identity map on Mi for A = Al; it maps Mé

= MO ® xRO;

M' = ki c, .
Al er ‘a

1 ~
to M, maps ker c to ker c¢ and sends x to x. It is clear

(o] Alu Alu

that if Bl is this free transfer, haB M x U > {0,1} is a smaller function
1
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in the well-ordering of such functions that we described earlier.
If, however, a(Mo) is not O-pure, there is some element q(x)

in a(Mo) that is Al-pure with leading term u such that cOu(x) = 1;

R ; so, we perform the free transfer el: 3 MLQR R > MuQR
H H

- = - 1) -
1 MO ker Cou’ M Al M)\l ) §Rx1‘81 has the obvious

M_ = ker ¢

o ou ® o R,

' =
where MA MA’ A#EX

effect. Again, it is clear that hae is less than ha under these condi-
1

tions. Therefore, after a suitable finite sequence of free transfers, we may

assume that each a(Mu) is u-pure.

Next, suppose that for some pair ul,uz, Bu u fails for the

172
family of modules {a(Mu)}; that is, there is an element a(x) in a(Mu )
1
such that its ul-support contains a monomial u that is the ul-leading
term of a non-u, -pure element o(y)a where y is in M , a is in R,

2

and if W, =4

1 deg (ya) > deg (y). We may assume that cu (a(y)a) = 1.

2! 1

We have a functional M + R given by ¢ which we extend
ul ul ulu

to a functional on M = 3 MuQR R in the way we described when describing
u

transvections. Left multiplication of this functional by ya now gives us
an endomorphism t of M of square O; so f = IM - t is an automorphism
of M which is a transvection. It is an easy check to show that hae is a

smaller function than ha; therefore, after a suitable finite sequence of

transvections and (possibly more) free transfers, 8 = lIg; we may ensure
i

that {aB(ML):u € M} is a well-positioned family of submodules.

Now we shall show that a well-positioned family justifies its

name.

Theorem 7.7 Let {Mu:u € M} be a well-positioned family of submodules in

N; then IMRZ@eM® R in the natural way.
H U MR

Proof: Given U € M, we choose for each monomial wu that is the leading

term of some element of M an element q in Mu having this leading term

with co-efficient 1; we denote the set of such q's by Qu. It is clear from
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the well-ordering that each Qu is an Ro—basis of Mu. For each ) ¢ A,
and monomial u that is a )-leading term of an element of Mo, we choose

an element q in Mo that has this term as )-leading term with co-efficient
1, and we denote the set of such q's by QOA' Every element of MO has a
A-leading term so QOA is an Ro—basis of Mo for each ).

The elements of QA are associated to ), and the elements of

QOA are associated to all indices in A - {A}.
We consider the set V consisting of all elements of the form
qtl...tn, where q lies in :(qu QOA) and no two successive terms in the

above monomial are associated to the same index, together with UQ . We
shall show that these elements in N have distinct leading termz,uand so,
are rightly Ro—linearly independent. Therefore, they form an Ro basis of
EMUR, from which our theorem is clear.

By the well-ordering of U, the leading term of qtl...tn is

utl...tn, where gq lies in QA and u 1is the leading term of g, or

where g lies in QOA and u 1is the )-leading term of g. So, we consider

an equality of the form ut = u't'...t; where m > n; u comes from

oot
1 m 1
g in Mu , u from q' in Mu . Assume m = n; we obtain by cancella-
2 1

tion, u=u'., If g€ QA' u is associated to A, so, q' e QO' for

q
for A'#2i. If q' is in Q

cannot lie in QA by construction. Therefore, gq' 1is in Qo or QOA'

the support of q' ¢ Mo contains a mono-

ox'
mial u' which is the leading term of a pure element g in MA' which
contradicts BOA' If q' 1is in QO' m=n= 0, and we obtain as above a
contradiction to BoA' The same applies if q ¢ QO‘

If q 1is in QOA’ then q' cannot lie in QA since m=n =0

so q 1is in QA" A = A'. Once more, we have a contradiction to BOA"
So, m > n, and, by cancellation, we find utl...tm n =u',
Since q' is in M , we see that if u, =20, t is in T
ul 1 m-n ul

so the -support of gq' in Mu contains ut

1

(or u |if

u 1 tan

m=n+ 1). This also is the ul—leading term of the non—ul-pure element

t. ...t or if = + 1 hich tradi B . =
at, men ( q m n ), which contradicts "o If uy o,
172
then since the support of q' in Mo contains utl...tm_n the leading term
of the pure element qtl...tm_n we again have a contradiction to Bu w.e
172

This completes the proof, since we see that the elements of V
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are independent and span ZMuR.
N

Bergman also uses a direct way of finding well-positioned families
of submodules that generate a given submodule of an induced module.

Thus, let L S N; we define Lu to be the Ru submodule of L
consisting of the elements whose p-support does not contain the p-leading term
of some non-u-pure element of L. By construction, the family {Lu} is well-
positioned; it is not hard to show that L = ZLuR, which as we have just seen
is naturally isomorphic to @ LuQR R. 1In theucase where L 1is a f.g. sub-
module, we may regaxrd L as being generated by some finite family F of
f.g. Ru submodules of L, {Mu} = F; so, ZMuR = L. To such a family, we
associate a function hF:M x U -+ {0,1} by
hF(u,u) = 1 if wu 1is in the y-support of some element of Mu;

O otherwise.

We shall characterise the family of submodules {Lu} where Lu is the set
of elements whose p-support does not contain the p-leading term of some non-
p-pure element of L by the property that the associated function is minimal

in the well-ordering of such functions.

Theorem 7.8 Let L be an f.g. submodule of N, where N 1is the module we
have considered throughout this chapter. Let Lu be the Ru submodule
consisting of those elements whose p-support does not contain the uy-leading
term of some non-p-pure element of L. Then, the function hF associated to
the family of submodules F = {Lu} is minimal over all possible finite

families of submodules that generate L.

Proof: Assume that we have a family with smaller associated function than
hF' Given a family of submodules Fi = {Mu} that generate L, we have a
map o:® MuQR R + N whose image is L.

u

The proof of the last theorem showed that the method used there
of passing to a map a': 3 MuQR R + N such that the family F2 = {a'(Mu)}

M
is well-positioned always forces the function hF to be less than hF .
2 1

So, we may begin by assuming that our family {a(Mu)} is well~positioned.

Therefore, L = & M ® R in the natural way.

URu
Suppose that the ul—support of Mu contains the ul—leading
1
term u of some non-ul-pure element x in L. We assume that cu u(x) =1,

We note that the degree of x 1is less than the degree of an elemen% of Mu
1
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whose ul—support contains u.
We wish to show that L = EMLR where ML =M u #u, whilst

u

u
M' = f(M ) where B8(m) =m - xc (m). So, B 1is the identity on elements
Y1 o1 She

of degree less than equal to X.

Clearly, if F' = {Mﬁ:u e My, n < hF' so, if EMLR =1, the

o
well-ordering of our functions imply that after finitely many steps (which
may include more operations that change F' into a well-positioned family)
we reach a family F = {Mu} where no element of Mu contains the py-leading
term of some non-p-pure element of L, and EMuR = L. Clearly, Mu = Lu.
Since our associated functions have decreased at each step, this will prove
our theorem.

We show that x lies in IM R from which it follows that this
must equal L. We use the notation of 7?7. We look at an expression of x
with respect to the Ro basis V. No elements of degree greater than that
of x can occur since all elements of V have distinct leading terms. So,
all elements in this expression of x must lie in EMUR' since their term
from Q either lies in Mu = ML, for u = 10 or else it is fixed by B8;

and so must Xx.

We can begin the proof that every Sylvester map rank function on
1
a k-algebra R taking values in ;-Z extends to a Sylvester map rank func-
tion on R' = Mn(k) E R that also takes values in %-Z. Set R_ = k;

Rl = Mn(k); and R2 = R. ©
The first point to notice about a Sylvester map rank function is
that the rank of a map o:P - Q depends only on the image of o in Q;
for, if a':P' - Q has the same image then o factors through o' and
o' factors through o, so they have the same rank. So, our problem is to
assign to a given f.g. submodule of an f.g. R' submodule of an f.g. projec-
tive R' module a rank so that the associated map rank function is Sylvester.
Let P = % PuQR R be an f.g. R' module, where we may assume
that Po is ©O; we identify P with the module N that we have been
discussing in this chapter, and so, we identify N with Pu. So, we have
bases Qu of each Pu over k, Dbases Tl u{l} of Mn(k) over k, and
T, u{l} of R over k, and consequently, a basis U of P over k

consisting of monomials of the form g or gt We also have the well-

«..t .
1 n
orderings previously defined of U and of the functions from {0,1,2} x U

to the natural numbers.
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Let L € P be some f.g. R' submodule of P; let Lu be the
Ru submodule of elements of L whose p-support does not contain the p-
leading term of some non~u~pure element. For u = 0,1, Lu has a rank as
Ru module, where pu are the usual rank functions on k and Mn(k). For
= 2, the map rank function allows us to define the rank of the inclusion

of L in P as a map of R, modules (recall that we earlier how to extend

2 2
a Sylvester map rank function in a canonical way to give us the rank of maps
from an f.g. module to an arbitrary module). We define the pre-rank of L
" . .
to be po(Lo) pl(Ll) + pz(L2 € P). The rank of L 1is defined to be the
minimal possible pre-rank of an f.g. submodule of P that contains L. So,
the rank of a map a:p' + P between f.g. projective R' modules is defined

by the formula: p(a) = min {pre-rank (L)}. We shall show that p is a
L>in o
Sylvester map rank function.

If we have a map o: %PLQR R + P, we could assign what we might

i
regard as a pre-pre-rank, which is (a(Pé)) + pl(a(Qi)) + pz(a|p.); our

P
o
next lemma, which shows that the pre-rank is the minimal possible pre-pre-
rank' as we consider the composition of o with isomorphisms of % QLQR R

- H
with other induced modules is the main step of the proof that p 1is a

Sylvester map rank function.

Lemma 7.9 Let L ¢ P be some f.g. R' submodule of P; let

{Mu:u = 0,1,2} be Ru submodules of L such that EMUR' = L; then the
_ . . + + .

pre-rank of L ¢ P is the minimal value of po(Mo) pl(Ml) pz(M2 c P)

Proof: Theorems 7.6 and 7.8 give us a finite sequence of operations that
pass from any given trio of modules {Mu} that generate L to the trio
{Lu} where Lu is the set of elements whose u-support does not contain
the p-leading term of some non-p-pure element of L. So, we simply need to
show that these operations cannot increase the 'pre-pre-rank'.

So, suppose that Mo is not O-pure; then there exists x in
Mo, where x 1is l- or 2-pure, its leading term is u, and c_ (x) = 1;

Ou
if x 1is 1 pure, we replace:

M_;
Mo by ker Cou Io,

Ml by Ml + le;

M by M

2 2°
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The pre-pre-rank does not increase.

If x is 2~pure, we replace

b M_;
My Py ker . IMgi
b M
Ml Y il'
M, by M, + xR,

and again the pre-pre-rank cannot increase, since the contribution of the
O-term has decreased by 1, whilst the 2-term has increased by at most 1.

If Ml is not l-pure, we simply transfer a free Rl module to
an RO free module so the pre-pre-rank cannot increase.

If M2 is not 2 pure, there is an element x in M2 with 2~
leading term u such that c2u(X) = 1; in this case M2 = ker c2u+ sz
where xR2 is a free direct summand of M2; it is also, however, a free
direct summand of P, since c2u(x) =1, so,

[ = (=
0, (M, SP) p2(ker(c2u|M2) cp) + 1.

In this case, our operation replaces:

+ .
M by MO xRo,

6]
Ml by Ml;
M2 by ker(czu]Mz)

and by our previous remarks, we see that the pre-pre-rank cannot increase.

Thus, we have shown that our efforts to make each Mu u-pure do
not increase the pre-pre-rank. We consider next the transvections we need
to make them well-positioned.

If Mu contains the u. -leading term u for some non—ul-pure

1
element xa for % in Mu ,a in R' and if u
2

then for ul = 0,1, we know that the transvection takes Mu to a homo-
1

1 = u2, deg xa > degx,

17 %

more care is required. We assume that c2u(xa) = 1, We define a functional

C2u

cpP -+ R

morphic image of itself whilst fixing the other Mu. If, however, u

on M2 by f:M2 i the transvection fixes MO and Ml and sends
M2 to Mé the image of LM - xaf; this map has as a left factor the
2
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inclusion of M2 in P; consequently, by axiom 2 for a Sylvester map rank
function it follows that pz(Mé c P} 1is at most p2(M2 c P} and the pre-
pre-rank does not increase.

Finally, we consider the case where {Mu:u e M} is a well-

positioned family of submodules of L such that ZMuR' =L but Mu for
H 1

some ul = 0,1,2 contains in its ul—support some monomial u that is the
ul—leading term of some non-y, -pure element x in L; we also may assume
that cu u(x) = 1.
1

If ul = 0,1, we see that the new Mul is a homomorphic image

of Mul, whilst the remaining Mu do not change. If u = 2, we fix MO
Ip-x C2u

and Ml and send M2 to the image of M2 c P > P, where IP - xc2u

is clearly an R linear map; again M, ¢ P is a left factor so the pre-

2 2
pre-rank cannot increase, which completes the proof of the lemma, since

there are no more operations that we have to worry about.

Theorem 7.10 Let R2 = R be a k-algebra with a Sylvester rank function p

Z; let R_=k, and let Rl = M (k) with the standard

o n
respectively; let R' = Rl a R2; let p be the rank

(o]

=1

taking values in

rank functions OO,Dl

function on maps between f.g. projectives over R' defined in the foregoing.

- 1
Then, p 1is a Sylvester map rank function taking values in ;-x. Consequently,
there is a homomorphism from R to a simple artinian ring inducing the

Sylvester map rank function op.

Proof: We need to show that axioms 1 to 4 for a Sylvester map rank function
actually hold for 5.

1 is clear.

We consider 2. Let cx:Pl +> P

B:P2 +~ P_ be a pair of maps

’
where we have an expression of Pi as ai induced mozule up our sleeve when
we need it. The image of oBf lies in the image of B, and so, p{(aB) < p(B).
E(a) is the pre-rank of some f.g. submodule containing im o

L= g LUQR R' g‘Pz where Lu is the set of elements whose p-support does
not contain the u-leading term of some non-u-pure element of L. That is,
pla) = 0o(Ly) + 0 (L)) + 0, (Ly € P); the image of aB lies in 'ﬁ(Lu)R',

so, by the last lemma,
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P(aB) < p (B(LJ)) + p (B(L)) +p,(B(L) cP).

2 P3 has L2 c P2 as left factor so

p(aB) s Po(Ly) + (L) + py(L, S P)) = pla).

So, 2 holds.
For the time being, we remark only that p(g g) < pla) + p(B);
the rest of 3 follows from 4.

The reason that a Sylvester map rank function works is essentially
because of axiom 4; so, one would expect this to be the most difficult part

of the proof. It is.

Consider a map P Q
* O fe) > (e
Y 8 PI Ql .

Let L be an f.g. submodule of Q & Q' that contains the image of (3 2)

such that E<$ 2) is the pre-rank of L, We consider the action of the
projection p:Q ® Q' + Q on L; the idea is to find Ru submodules of
L, {LL} such that {p(LL)} are a well-positioned family, which implies
that p(L) = ep'(L;)QR R; also, we wish the pre-rank of L to equal

u
) L] L] ) i 1] )
Pollg) + Dl(Ll) +0,(L, 2Q8Q ). This allows us to express o,(L; < Q ® Q')
o, [¢] o, [¢] p" Q
as being p < for a map sl &' e-(e}) where P! are f.g. R
2 " . i 2
Y2 B2 Y, B, P) o]

projectives, (kerp|L6)R' + (kerp|Li)R' + (imBz)R' > im B, and also,
(imp|Lé)R' + (imp|Li)R' + (imaz)R' 2 im ¢. From this, 4 follows as a

on R,.

corollary of 4 for Py 2

Let Lu be the set of elements of L whose u-support does not
contain the u~leading term of some non-u-pure element of L: then, we know

~

that L =& LuﬂR R' 1in the natural way, and the pre-rank of L 1is equal to
H
H

oO(LO) + pl(Ll) + 02(L2 cQeQ").

Let p:Q ® Q' » Q be the projection on ¢Q; if {p(Lu)} is not
a well-positioned family, we perform a series of free transfers and trans-
vections on the family of modules {Lu} until their image do form a well-
positioned family. It is clear that the free transfers do not increase the

pre-pre-rank of the family of modules {Lu} at any stage, so, we are left
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to worry about the transvections. These arise when the image p(Lu) are
all u-pure but some p(Lu) contains the p-leading term u of a non-py-pure
element =xa chosen so that cuu(xa) =1, x is in p(Lu,) and if

U= u', deg(xa) > deg(x). It is clear that the only case that worries us

occurs when u = 2. 1In this case, we alter L to the image of

2
I - x'a(pczu)

L2 cQeQ! —————»0 ®Q', where x' 1is a pre-image of x under p.

Since this map factors through L2 S Q ® Q' it cannot give a greater pre-
pre-rank. So, eventually, we reach a family of modules {L;} such that the
pre-pre-rank associated to {LL} is at most that of the family {Lu} we
began with and the images P(LL) form a well-positioned family. Since the
modules {Lﬂ} generate L, their pre-pre-rank must be at least that of the
family {Lu} by lemma 7.9. Since p(LL) form a well-positioned family,
plL) 3 p(LL)QR R'., So, the kernel of p restricted to L is

i

& kerp[L;@R R'. We have exact sequences O -+ LL nQ' - LL > p(LL) + 0 for
M

u=0,1,2,

From this, we wish to deduce that
pu(LL) = pu(LL ne' + pu(p(L')), u = 0,1, which is clear; and also, that
p2(Lé cQ@eQ') =2 p2(Lé nQ'eQ') + p2(p(Lé) € Q), which needs an argument.
In fact, it is not obvious that we can define p2((Lé n Q') € Q') because
Lé n Q' need not be f.g. Instead we approximate it by f.g. modules that are
good enough.

Let a2:PI + Q be some R2
tive module whose image equals p(Lé); then, we have a map from P to Lé
lifting ay, we write its composite with L! £ Q & Q' as <a2>zP »(g)

Yo

linear map from an f.g. R2 projec-—

Ql

L! 1is a f.g.; therefore, we can find a f.g. R submodule of Lé ne', M

2 2

2
such that together with the image of $2>P it generates the whole of L
2

1
5
we may further assume that (Lé n Q')R'" + (Ll nQ')R' + M2R') contains the
image of B.

We find some R2 linear map p2:P5 + Q' whose image is M2,

and we construct the composite map: ay (0] PI Q
H K —-><$>
Yo By \P3 Q'
a, O
By construction, the image of is L! so that

2
Yo By
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p2(Lé cQ0®Q') is p2<;§ 62) > p2(u2) + p2(62).

Since im B ¢ (Lé n QIR + (Li n QIR + (im 62)R',
P(B) € pg (L' n Q") + p (L n Q') + p,(B,), and similarly,

pla) < PoP(L")) + o, (R(L")) + pyla,).

"'GO__ - = ' ' ] .
So, p(; B) = pre-rank of L pO(LO) + pl(Ll) + p2(L2 Q69"

o}
. 8

D(Lé no'y + po(p(Lé)) + pl(Li no'y + pl(p(Li)) + p2(u2) + p2(B3), which

which is po(Lé) + pl(L’) + p2<;2 ;, which is greater than or equal to

is at least E(u) + E(B). This is axiom 4, and also completes the proof of
3.

We have extended p, on R2 = R to a Sylvester map rank function
5 on Mn(k) ﬁ R, and it is clear that 5 takes values in %-Z.
Mn(k) E R = Mn(A) where A 1is the centraliser of the first factor of the

coproduct. So, by Morita equivalence, E induces a Sylvester map rank func-
tion on A that takes values in Z. By theorem 7.5, the universal localisa-
tion of A at the set of maps between f.g. projectives whose rank is equal
to the rank of the identity map on the domain and the codomain is a local
ring with a skew field F for residue class ring. Moreover, the map A -+ F
induces the rank function on A. Consequently, the composite map

R > Mn(k) U R 5 Mn(A) > Mn(F) induces the rank function on R. As we

P
k 2
saw in theorem 7.5, the kernel of the map consists of the elements r in

R such that p(R/rR) = 1, or equivalently, such that p(r) = O.

Theorem 7.1l A Sylvester rank function on a k-algebra R taking values in
1
;—z arises from a homomorphism to a simple artinian ring, Mn(D), where D

is a skew field. The kernel of the map consists of the elements of rank O.

We summarise the contents of this chapter so far with regard to

homomorphisms from k-algebras to simple artinian rings.

Theorem 7.12 Let R be a k-algebra; then there is a 1 to 1 correspondence
between equivalence classes of homomorphisms from R to simple artinian
rings of the form Mn(D), where D 1is a skew field, and Sylvester rank

functions that take values in %—Z.



This result has the following interesting consequence

Theorem 7.13 Every right artinian k-algebra embeds in a simple artinian

ring.

Proof: Call the right artinian ring A. Let s be the length of A as a
module over itself. We define a module rank function by

p(M) = (length of M)/s. Clearly, this is a Sylvester module rank function.
By theorem 7.11, there is a homomorphism from A to a simple artinian ring
S, which induces this rank function on A, and the kernel of this homo-
morphism is the set of elements a in A such that p(A/ad) = p(A); the

only element for which this is true is O.

In order to find the modification necessary to extend theorem
7.12 to a theorem about homomorphisms from an arbitrary ring to simple
artinian rings, it is useful to see what can go wrong in general. We look at
possible Sylvester map rank functions on artinian rings. If A is an artinian
ring, then GO(R) = Zk, where t 1is the number of non-isomorphic simple
modules. We assign the simple modules ranks in the non-negative rationals,
and it is clear that this defines a rank function on GO(A) that induces a
Sylvester module rank function on A, and so, a Sylvester map rank function
on A provided that we normalise it to ensure that the rank of the free
module of rank 1 has rank 1. In the case where A 1is a k-algebra, we have
just shown that these must all arise from a homomorphism to a simple artinian
ring, and it is easy to check that they arise from the representations given
by the f.g. projective left A modules. However, for a general artinian ring,
it is easy to see that they do not all arise from a homomorphism to a simple
artinian ring. For example, consider the ring z/pz, which has the unique
simple module Z/p, to which we assign the rank %. It has no embedding in
a simple artinian ring, but this rank function is faithful. What has gone
wrong in this example is that we have the rank % associated to multiplication
by p on the free module of rank 1, whereas in a simple artinian ring, the
rank of an integer must be O or 1, depending on whether it is invertible
or O. This turns out to be the only modification we need to our previous

theory.

Theorem 7.14 Let R be a ring. Then the equivalence classes of homomorphisms



122

from R to simple artinian rings are in 1 to 1 correspondence with the
Sylvester map rank functions that take values in %-x such that the rank

of an integer is O or 1.

Proof: All that is left to do to prove this is to show that every Sylvester
map rank function of the right type arise from homomorphisms to simple
artinian rings. Let p be such a rank function on the ring R.

Assume that p{(n) = O for a non-zero integer n. Let I be
the set of elements in R such that p(r) = O. We have already remarked
that this forms an ideal of R. Moreover, if mn 1lies in I for integers
m and n, one of m and n must lie in I for if p(m) =1,
p(mn) = p(n). Therefore, the intersection of I with Z is a prime ideal
of Z. Consider R/I, which is a Z/p algebra for some prime p. We
define a Sylvester map rank function on R/I by E(a) = p(a) where a is
the image of o in R/I; it is simple to check that p is well-defined.
Consequently, it is induced by some homomorphism R/I -+ S to a simple
artinian ring. The map from R to S induces p on R clearly.

Conversely, assume that p(n) =1 for all non-zero integers n.
Then, by 7.4, the rank function o on R extends to a Sylvester map rank
function on R,, since all the elements in Z* have the same rank as the
identity map on their domain and codomain. But Rz* is a D-algebra, so the
rank function on it is induced by a homomorphism to a simple artinian ring,

S. The induced map from R to S induces on R,

Maximal epic subrings and dominions in simple artinian rings

One of the difficulties we encountered at the beginning of our
study of a homomorphism from R to a simple artinian ring S was that the
maximal epic R-ring in S was not simple artinian. In this section, we shall
study an individual homomorphism from a ring to a simple artinian ring more
closely; we shall be interested in the maximal epic R-ring and the dominion of
R 1in S. Our principal results state that they must both be semiprimary
rings.

We had better define the terms in the last paragraph. Given a
homomorphism from a ring A to a ring B, we consider the set of all epic
A-rings in B; since the ring generated by two epic A-rings is an epic A-
ring, and the union of epic A-rings is an epic A-ring, there is a unique

maximal epic A-ring in B. The dominion of A in B is the maximal subring

D of B such that homomorphisms from B that agree on the image of A in



123

B must agree on D; it is clear that the maximal epic A-ring in B lies
in the dominion of A in B. The dominion has a simple description given
in the next lemma. First, we define a useful construction. If R 1is a ring
and M is an R bimodule, the trivial extension of R by M is the ring
whose R bimodule structure is R ® M, and whose multiplication is defined

by M2 = 0.

Lemma 7.1l5 Let ¢:A - B be a ring homomorphism; then the dominion of A

in B 1is the centraliser of 1 &8 1 in the B,B bimodule B QAB.

Proof: Certainly, the dominion centralises 1 & 1, for we have the following

two ring homomorphisms from B to the trivial extension of B by B & B;

the first is the identity map from B to B; the second sends b ¢ B Ato
b+bel-18&Db. They agree on A, so, they must agree on D, which
shows that d®2 1 =14 for 4 in D.

Conversely, if we have two homomorphisms from B to a ring C
that agree on A, ¢l and ¢2, the B,B bimodule ¢1(B)¢2(B) is a quotient
of B QAB, so that the centraliser of 1 & 1 lies in D.

In order to give the reader some better idea of the dominion, we

prove the following interesting lemma. The double centraliser of a subring

A of a ring B is the ring of elements of B that centralise the centraliser

of A in B.

Lemma 7.16 Let ¢:A > B be a ring homomorphism. The dominion of A in B
lies in the double centraliser of A in B. If A 1is a k-subalgebra of

Mn(k), the dominion of A in Mn(k) is its double centraliser.

Proof: Let ¢ lie in the centraliser of A in B; we define two homo-
morphisms from B to B[x:x2 = 0] one of which is the identity map, the
other of which sends b in B to b + x(bc - cb). It is clear that they
agree on the image of A, and so, they agree on D the dominion of A in
D; consequently, D 1lies in the double centraliser of A in B.

In the case where B = Mn(k) and A 1is a k-subalgebra, we may
prove the converse. We use the last lemma. D is the centraliser of 1 @ 1
in M (K@M (k). As M (k), M (k) bimodule, M_(k)@,M (k) Ztmn(k) for

some integer t. Let cl,...c be the images of 1 & 1 in the direct

t
summands on the right of this isomorphism; then the dominion of A in Mn(k)
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is the centraliser of these elements, and CpressCp all lies in the
centraliser of A in Mn(k).
We wish to study the dominion of a ring A under a homomorphism

from A to a ring B; our next lemma gives us a method of attack.

Lemma 7.17 Let ¢:A + B be a ring homomorphism; then the dominion of A
in B 1is the endomorphism ring of the module M over the ring /B BQAB

(o] B
where M 1is given by the exact sequence: O - (O B) $ (B BQAB) >M=>0Q

a(0 b) = (O 1eb) .

Proof: All endomorphisms of M 1lift to endomorphisms of (B BQAB) that
normalise (O lQAB). The endomorphism ring of (B BQAB) is defined by
left multiplication by elements of B; so we look for elements t of B

such that t®1 = 1l®t. Hence, our lemma follows.
If B is semiprimary, so is B B@AB ; therefore, we wish to

(o] B
show that the endomorphism ring of a finitely presented module over a semi-
primary ring is itself semiprimary. This has been shown by Bjork (71), who
also had results in the direction of the corresponding theorem for left
perfect rings; we shall present a proof of both these results next,

generalising Pjork's theorem.

Theorem 7.18 Let R be a left perfect ring (or a semiprimary ring), and
let M be a finitely presented right module over R; then the endomorphism

ring of M over R 1is left perfect (or semiprimary respectively).

Proof: First, we see that because M 1is finitely presented it has the
descending chain condition on submodules with a bounded number of generators,
since this is true for its projective cover by the left perfect condition.
Consequently, it is the direct sum of finitely many indecomposables.

Let P be the projective cover of M; so there is an exact
sequence: O =+ I =+ P> M >0 where I 1is finitely generated. Any endo-
morphism of M 1lifts to an endomorphism o of P such that oa(I) <€ I. We
intend to show that every endomorphism of M 1lifts to a nilpotent endomorphism

of P or acts invertibly on a direct summand of M.
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Let a:M + M lift to a:P + P, a(I) c I. There exists an
integer n such that a’p = an+lP and &nM = &n+lM. Since a:unP > anP
is surjective, and EndR(P) is left perfect, anP = eP for some idempotent
endomorphism of P, e. If unP = 0, then &nM = 0, since (l-e)P cannot
map onto M as P 1is the projective cover of M,
&nM = (anP + I)/I = eP/I n eP = eP/el, which shows that &nM is finitely
presented; further, &:&nM -> &nM is a surjective map; we shall show that
this forces it to be an isomorphism on EnM. Let J/el be the kernel of
this map; so, eP/J = eP/el; so, there exists an endomorphism R:eP ~» eP
such that BJ = eI, Since I < radp, el c rad(eP) and eP 1is the projective
cover of &nM; therefore, £ must be an invertible map since it is inducing

an isomorphism module the radical of P; if gJ = el g J, we obtain an

infinite descending chain of modules of bounded number of generators,

J 2 B8J 2 eeen anJ .++, which is impossible, so J =-eI, and a is an
isomorphism on anM with inverse vy. We see that Ynan gives a projection
from M onto &nM, which proves our dichotomy.

Next, we show that if M 1is an indecomposable module, its endo-
morphism ring is left perfect (or semiprimary if R 1is semiprimary). Since
M 1is indecomposable, every endomorphism on M 1is invertible or else it
lifts to a nilpotent endomorphism of the projective cover P of M as we
have just shown. FPirst, we deal with the left perfect case. Let &i be
elements of EndR(M) that lift to nilpotent endomorphisms a, on P. The
o, v.. O M3

elements &i are themselves nilpotent and so, El v &nM c el

z 71
o an_lP ¢ I.

. e c
hence, al unP-+I ¢ ua

ces O P + I provided that a

1 n-1 1

The number of generators of CIRERD anP + I 1is bounded for all n, so

eventually, al cee anP c I, which implies that &l .o &n = O, This shows

that the radical of EndR(M) is left T-nilpotent and so EndR(M) is left
perfect by Tachikawa (73). This leaves the case where R 1is semiprimary.
Then EndR(P) is semiprimary, so that there exists an integer N such that

N -

a = O for any nilpotent endomorphism of P; hence, if o is an endomorphism

-N i
of M that is not invertible a = O. By the Nagata, Higman theorem, the
radical of EndR(M) is nilpotent, so EndR(M) is semiprimary.

If M is an arbitrary f.g. module, we write M ¥ where

8
i=lMi
Mi are indecomposable; by theorem 2.4 of Tachikawa (73) EndR(M) is left

perfect if R 1is, and it is semiprimary if R 1is semiprimary.
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Putting this theorem together with the preliminary discussion, we

deduce what we were after.

Theorem 7.19 Let ¢:R » S be a homomorphism from a ring R to a semiprimary

ring S; then the dominion of R in S 1is also semiprimary.

Proof: By lemma 7.17, the dominion is the endomorphism ring of a suitable
finitely presented module over a semiprimary ring; so it is semiprimary by

theorem 7.18.

This theorem has a number of interesting consequences but we begin with the

following lemma.

Lemma 7.20 Let {Di} be a family of subrings of a ring all of which are

their own dominion in R; then QDi is its own dominion in R.

R.

Proof: The dominion of gDi in R 1is the centraliser of 1®1 in Rﬁn
i

D

By considering the natural map from RgnD

R to RQD R, we see that this
i i

centraliser must lie in Di and so in nDi; therefore nDi is its own
dominion.
A semisimple artinian ring is always its own dominion, so there

is the following result.

Theorem 7.21 The intersection of a collection of semisimple artinian subrings

of a ring is always semiprimary.

The kernel of a derivation d:R -+ M is always its own dominion,
as one sees by considering ring homomorphisms from R to the trivial exten-
sion of R by M; similarly, it is clear that the fixed points of an endo-
morphism of a ring R is a dominion. It follows that the kernel of a family
of derivations or the fixed points of a family of ring endomorphisms on a
semiprimary ring is also semiprimary. Similar results are true for perfect

rings. The following corollary will be needed in the next section.

Corollary 7.22 Let S be semiprimary with subring R; then the centraliser

of R 1is semiprimary.
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Proof: The centraliser is the kernel of the inner derivations determined by

the elements of R; so we can apply the foregoing discussion.

We should like to study the maximal epic R-subring of a ring R
under a homomorphism from R to a semiprimary ring, S. First of all, the
maximal epic R-subring must lie in the dominion of R in S, and this
suggests that we attempt to find it in the following way. Let DO be the
dominion of R in S; 1in general, let Di+ be the dominion of R in

1

D at all stages the maximal epic R-subring of R in S must lie in Di’

17

so we hope that at some stage Di = Di+ which implies that R » Di is an

ll
epimorphism and Di is the maximal epic R-subring of R in S. This is
what we shall show and it follows that the maximal epic R-subring of a ring
in a semiprimary ring is always semiprimary, since we know that each Di is

semiprimary.

Theorem 7.23 Let ¢:R +~ S be a ring homomorphism from R to a semiprimary

ring S; then the maximal epic R-subring in S 1is semiprimary.

Proof: As above, we let Do be the dominion of R in S, and in general
we let Di+l be the dominion of R in Di' By theorem 7.19, each Di is
semiprimary. At each stage the number of elements in a maximal set of ortho-
gonal idempotents is finite and decreases as the subscript increases; there-
fore it is eventually constant at some integer s. Once this stage has been
reached, the number of non-isomorphic principal indecomposable projective
modules can only increase as the subscript increases, and it is bounded by
s; therefore it is eventually constant at some integer t; we assume that

we have reached this point for the subring Dm.

Let N be the radical of D ; then for k > M, we shall show

k k
= . i c .
that Nk Nm n Dk Certainly, Nm n Dk c Nk For the converse, we note
that by construction a maximal set of orthogonal idempotents in Dk is also

a maximal orthogonal set of idempotents in Dm: this continues to hold for

Dk/Nm n Dk inside the semisimple artinian ring D /N,. Further the number

of non-isomorphic principal indecomposable projectives over Dk/Nm n Dk is

equal to the number of simple Dm/Nm modules; consequently, if {ei:I =1
to s} is a maximal set of orthogonal idempotents in

Dk/Nm n Dk’ eka/Nm n D

~

e = ejDk/Nm n Dk if and only if eiDm/Nm = eij/N.

If D /N x M (E,), for skew fields E,, it is now clear that
m'm j vy i i

1



128

Dk/N nND =xM (Fi) where Fi is a semiprimary subring of the skew field
m

k i Vi
Ei and consequently a skew field itself; it follows that Nk = Dk n Nm.
u-1 R
Suppose that Nm = 0. Dm+u/Nm+u < Dm+l/Nm+1 Dm/Nm' Since
. sl . D N : X in th
Dm+1 is the dominion of Dm+u in Dm, m+1/ 1 is contained in e
dominion of the semisimple artinian ring D _, /N in D /N ; so,
m+u’ m+u m m
= . I
Dm+u/Nm+u Dm+1/Nm+l n general, assume that
j = J g ; Nt oo b /N o
Dm+u/Nm n Dm+u Dm+j/Ni Dm+j’ then Dm+u/ mn " Pmeu S m+j/ m O m+j
and they differ only in the socle of the rings which implies that as right
j+1 j+l ~ j+1
= N (-]
modules over Dm+u/Nm n Dm+u’ Dm+j/Nm n Dm+j Dm+u/ n Dm+u M,

where M is a semisimple module; this implies that the dominion of

j +1
D /NJ+1 nbD is itself and must equal D /Nj nbD
m+u’ m m

. For, i
+n m+j+1l" m m+3j+1 or, if

ACB and B=A &M as right A module, then

~

BR, B a0 Mg B = AR B ® MEAB, and m@l # 1@b forany m in M and b

in B, By induction, we find that D =D which proves that D
m+u m+u-1 m+u~1
is the maximal epic R-subring in S. Therefore, the maximal epic R-subring

is semiprimary.

An odd consequence of this result is that a ring has a homo-
morphism to a simple artinian ring if and only if it has an epimorphism to
a simple artinian ring: let ¢:R + S be some homomorphism to a simple art
artinian ring, and let E be the maximal epic¢ R-subring in S; then E is
semiprimary and so it maps surjectively to some simple artinian ring, S';

the composite map from R to S' 1is an epimorphism.

The simple artinian spectrum of a k-algebra

There has been much talk about a theory of non-commutative
algebraic geometry. It is not my intention here to add to this, but rather
to point out that our preceding theory does give us a functor from rings to
topological spaces which is a simple summary of the information on possible
homomorphisms from the ring to simple artinian rings. It would be possible
to equip this space with a sheaf of rings, and to represent modules over the
ring as a sheaf of modules over this sheaf of rings; however, in the absence
of any obvious use for this machinery, I shall leave it to future
mathematicians of greater insight. Finally, the theory here is stated only
for k-algebras over a field k; it is possible to present the theory for

arbitrary rings, but the care required in order to avoid simple pitfalls
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makes the discussion cumbersome.

We begin by considering a particular pre-ordered abelian group
functorially associated to a ring R. We define M(R) to be the abelian
group generated by isomorphism classes of f.p. modules over R with rela-
tions [A & B] = [A] + [B]. We define an ordering on M(R) by specifying
a positive cone. [A] > O for all f.p. modules A, and if A+ B ~+C >0
is an exact sequence, we define [B] - [C] > O, and [A] + [C] - [B] > O.
If ¢:R >+ S is a homomorphism of rings, [A] »> [AQRS] defines an order-
preserving homomorphism from M(R) to M(S), since QRS is a right exact
functor. M(R) has an order unit since there exists n such that
["r1 > [al for any module A. It is now clear that our Sylvester module
rank functions on a k-algebra R are simply order-preserving homomorphisms
from M(R) to é-z for varying integers m such that [R] goes to 1.
Given n such Sylvester module rank functions, Py we form a family of
Sylvester module rank functions {Zqipi:Zqi =1, qi > 0, qi € ©}. This
arises from the ring theory in a natural way, for if the homomorphism

¢i:R »+ S gives rise to the Sylvester rank function Py we have a homo-

morphismifrom R to xSi, and the various homomorphisms from this semi-
simple artinian ring to simple artinian rings give rise to the rank functions
Zqipi. So, our space of equivalence classes of homomorphisms from R to
simple artinian rings has the structure of a Q-convex subset of the space of
all order-preserving homomorphisms from M(R) to the reals, and can be given
the subspace topology (once the space of all order-preserving maps from

M(R) to the reals has been given a suitable topology). A particularly
important set of points in this space are the extremal points which are those
Sylvester module rank functions that do not lie in the linear span of some
other set of Sylvester module rank functions. We should like to be able to
show that every Sylvester rank function arises in a unique way as an element
in the linear span of extremal rank functions. In order to prove this it is
convenient to look at homomorphisms to simple artinian rings in a slightly
different way.

If we have a homomorphism from a ring R to a simple artinian
ring Md(D) where D 1is a skew field, we may regard the simple left Mn(D)
module as an R,D bimodule M such that [M:D] = n; conversely, given such
a bimodule, we automatically have a homomorphism from R to Mn(D). The
Sylvester module rank function associated to such a bimodule is given by

p(A) = [AQDM:D]/[M:D]. We note that the endomorphism ring of M as an R,D
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bimodule is the centraliser of R in Mn(D). A decomposition of M as an
R,D bimodule, M & Ml ® M2 where the rank function associated to Mi is
e, allows us to write p = ([Ml:D]pl + [MZ:D]QZ)/[M:D]. If this happens
then either p is not extremal or else it is extremal and the image of p
is a distinct subgroup of 1/[M:DJp. We shall show a sort of converse to

this statement.

Theorem 7.24 Any Sylvester rank function lies in the linear span of some

set of extremal rank functions.

Proof: ILet R be a ring and let p be a Sylvester rank function taking

values in %-Z; so p arises from a homomorphism from R to Mn(D) for
some skew field D; we prove our theorem by induction on n; it is clear
for n =1, since all such arise from homomorphisms to skew fields which

are extremal points. Let M be the simple left Mn(D) module considered

as an R,D bimodule.

Under the assumption that p 1is not extremal, there exist simple
artinian rings Sl’SZ and S and homomorphisms R - Sl X 82 -+ § such that
the composite map induces the rank function p whilst R > Si induces the
rank function Py different to p. By theorem 7.3, there exists a simple

~

artinian ring Mn(D) o8 = an(E), and from this we form the simple artinian
R

ring an(D) Mi?D)an(E) s an(F); let M be the simple left

M__(F) module regarded as an R,F bimodule. Since R 1lies in an(D),
M £ (MQDF)R as R,F bimodule; on the other hand, R lies in Sl X 82 and
so the centraliser of R in an(F) contains an idempotent e such that
the rank function associated to eM is the rank function Py consequently,
eM 1is not isomorphic to a direct sum of copies of M F; since M is a
module of finite length, the Remak, Krull, Schmidt theorem implies that

MQDF = Ml ] M2 for some R,F bimodules Ml and M2. Therefore, p lies

in the linear span of the rank functions associated to the bimodules Mi;
however, [Mi:F] < n, and so the theorems follows by induction on n.

By applying the argument used in this theorem in the light of

the information it gives us we can strengthen our conclusion yet further.

Theorem 7.25 Any Sylvester rank function has a unique expression as the

weighted sum of extremal points; further, if p = 1/mim,p, where Im, = m,
i i
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h.c.f.{mi} =1, and Py is an extremal rank function mapping onto l/siz,

then p maps onto 1/ §misi.

Proof: Let R be the ring on which we have the Sylvester rank function op.
Further, let p = l/mEmioi be some expression of p as a weighted sum of
extremal points P where p; mWaps onto l/s;z so that to each rank func-
tion Pyv we have a homomorphism from R to a simple artinian ring

S, =M (D;) where D, is a skew field; let M, Dbe the simple left
M (Di) module regarded as an R,Di bimodule. Let R -+ Mn(D), where D

is a skew field, be a homomorphism inducing p. Let M be the simple left
Mn(D) regarded as R,D bimodule. Let N = Esimi. We also have a homo-

morphism R - ng.(Di) > xM

(D,) » M _(E) for some skew field that induces
i Si i Sjm; 1 N

the rank function p on R; in order to do this, it must assign the rank

1/n to a simple module over the ring st n (Di), and we we have specified
i Simj
homomorphisms from Di to E. We form the simple artinian ring MN(E) o Mn(D)
R
which is isomorphic to MN (E') for some skew field E'; we form the
P

simple artinian ring M_ (D) M_ (E") M_ (E) = (F}. Let M Dbe
N, 1, D) N, M TE) MNP
the simple left MN (F}) module considered as an R,F bimodule. Since R
P
lies in xM (D,), its centraliser contains a copy of M _ (xM_ (k)) where
i % 1 p my
k 1is the centre of F, and therefore, M = e (MiﬁD F)mip as R,F Dbimodule.
i

Since the rank function induced by the bimodule MiQD F 1is extremal and maps
i

onto l/siz where s; = [Mi:Di], MiQDF is indecomposable; however, R
also lies in Mn(D), so, on setting gq = Np/n, we see that E_; (MQDF)q
as R,F bimodule. By the Remak, Krull, Schmidt theorem, we see that g

divides p, and M@ F = @& (MiﬁD F)mip/q; therefore, N divides n. If

D
p maps onto l/tZ there is a homomorphism to a simple artinian ring Mt(D')
where D' 1is a skew field that induces p; we have just shown N must
divide t, but it is clear that p takes values in 1/N Z so that the last
statement of the theorem follows. The first statement of the theorem is clear
by now, since for any skew field G containing F, MQFG = e (MiQDiG)mip/q
is the unique representation of EQFG as a direct sum of indecomposable bi-
modules, which shows that any representation of p as a weighted sum of
other rank functions is refinable to this representation in terms of extremal

points.
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There is one further point we should mention in this discussion
of R,D bimodules; the last result shows that the extremal points correspond
to bimodules that remain indecomposable under 'extension of skew field'; we
should like to be able to characterise those extremal points that arise from
epimorphisms to simple artinian rings in some similar way. Before we can do
this, we need to link the notion of epimorphisms on rings to the associated
functor on categories of modules over the rings. The next result is due to
Silver (67). A functor from a category C to a category D is said to be
full if it is an embedding, and if M,N are objects in the image of the

functor, and o is a map between them, o is in the image of the functor.

Theorem 7.26 Let ¢:R - S be a homomorphism of rings; it is an epimorphism

if and only if the forgetful functor ¢:mod S + mod R is a full functor.

Proof: If ¢:R~+ S 1is an epimorphism, then for any S module M,

M@ S = MQS(SQRS) = MQSS = M: so for any pair of S modules M,N an R
linear map from M to N must be S linear as we see by considering the
map it induces from MQRS to NQRS.

Conversely, if ¢:mod S > mod R is a full functor,
HomR(s,SQRs) = Homs(s,ssRs); we have an R linear map from S to SQRS
given by o(s) = s®l; so this defines an S linear map, and
s®l = a(s) = a(l)s = 1®s, which implies that SQRS = S, which shows that

R >+ S is an epimorphism.
The following consequence is noted by Ringel (79).

Theorem 7.27 Let R be a ring, and let M be a module over R such that
EndR(M) is a skew field D, and [M:D] = n; then the corresponding map
from R to Mn(D) is an epimorphism, and all epimorphisms arise in this

way. M is the simple Mn(D) module.

Proof: Let R + S be an epimorphism from R to a simple artinian ring S;
then if M 1is the simple S module, EndR(M) = EndS(M) = D, a skew field,
and [M:D] = n where S = Mn(D).

Conversely, if M is an R module such that EndR(M) =D, a
skew field, and [M:D] = n, we have a map from R to Mn(D) and given any

Mn(D) module, its structure as an R module is a direct sum of copies of
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M; so it is clear that all R module maps between S modules are S
module maps, which shows that the map from R to Mn(D) is an epimorphism

by 8.4.

So this shows that epimorphisms ought to correspond to simple

bimodules. Our next theorem proves that this is precisely the case.

Theorem 7.28 Let p be a Sylvester rank function on the ring R taking
values in %-z; then p 1is induced by an epimorphism to a simple artinian
ring if and only if there is a skew field D and a simple R,D bimodule

M, [M:Dp] = n, that induces this rank function on R.

Proof: If R ~> Mm(D) is an epimorphism where D is a skew field then the
simple left Mm(D) module M considered as an R,D bimodule is simple.
Conversely, if M is a simple R,D bimodule for some skew
field, [M:D] =m, 1let R' be the dominion of R in Mm(D); if N is
the radical of R', NM is a distinct R,D sub-module of M; therefore,
N = 0, and R' is a direct sum of simple artinian rings, since it is a
semiprimary ring (theorem 7.19); if e 1is a central idempotent in R',
e # 1, then eM 1is a distinct sub-bimodule of M and so e = O. Hence,
R' must be simple artinian, and the homomorphism from R to R' is an

epimorphism.

The results of this section show that the space of all Sylvester
rank functions on a ring form a sort of infinite dimensional @-simplex since
every point in it may be expressed in a unique way as a weighted sum of
extremal points; this suggests that some detailed study should be made of the
homomorphisms from a ring to simple artinian rings that induce extremal rank
functions on it; at present, little has been done in this direction.

In addition to the simplex structure on the space of all Sylvester
rank functions, there is also a topology reflecting the notion of specialisa-

tion; we define a rank function to be a specialisation of the Sylvester

p
rank function oy if p2(M) < pl(;) for all f.p. modules M; it is easily
checked that this generalises the standard notion of specialisation. The
closed sets in our topology on the space of Sylvester rank functions are
those that are closed under specialisation. We may also reformulate a version
of the support relation discussed by Bergman (76) in terms of the simplex

structure on the space of Sylvester rank functions and the specialisation
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topology. We say that the extremal Sylvester rank function p supports the
extremal Sylvester rank functions {oi:i =1 to n} if it specialises to
some point on the interior of the face spanned by {pi}. Again at present

we have little information on this structure.



PART 1II

Skew Subfields of Simple Artinian Coproducts
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8 THE CENTRE OF THE SIMPLE ARTINIAN COPRODUCT

In this chapter, we shall begin a fairly specific study of the
simple artinian coproduct with amalgamation; we shall attempt to find the
centre of such simple artinian coproducts in terms of the factors and the
amalgamated simple artinian subring. Unfortunately, our results are at
present incomplete, so we shall begin by stating the conjecture, and then
we shall summarise the cases for which it is known to be true, before we
prove them.

These results will be used in the next chapter to study the f.d.

division subalgebras of a skew field coproduct.

Conjecture 8.1 The centre of S1 o 52 lies in S, except possibly when
S

both S1 and 52 are of rank 2 over S; 1in this case, the centre lies in
S, or is the function field of a curve of genus O over its intersection

with S.

The function field of a curve of genus O over a field K is a

field F such that LQKF = L(t), where L is a suitable f.d. extension of
K, and t 1is a transcendental. We shall present examples to show that all
curves of genus O arise as centres of skew field coproducts at the end of
this chapter.

This conjecture is known to be true when S 1is a common central
subfield of S1 and 52' It is also true for skew field coproducts
amalgamating an arbitrary skew subfield, except possibly when there are only

two factors both of which are of dimension 2 over the amalgamated skew sub-

field. It may also be proven if one of the factors is simple artinian.

The result that we use to prove our conjecture when we can is

due to Cohn (84); it summarises the connection between the centre of a fir,
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and the centre of its universal skew field.

Theorem 8.2 Let T be a non-Ore fir with universal skew field of fractions

U; then the centre of U is the centre of T.

The proof is too long to include here; the interested reader
should look at Cohn (84). Our first special case of 8.1 is a direct applica-

tion of this.

Theorem 8.3 The centre of ElOMm(E2) lies in E, provided that [El:E]
E

or [Mm(E2):E] is greater than 2.

Proof: El o Mm(E2) is the universal simple artinian ring of fractions of
E

=]

El E Mm(E2) = Mm(R), where R 1is a fir, since, by Bergman's coproduct
theorems (see chapter 3), and the Morita equivalence of Mm(R) and R,

every submodule of a free R module is free. Further, the assumptions on
dimension imply that R cannot be Ore, and so, by 10.2, the centre of the
universal skew field of fractions of R 1is the centre of R. So, the centre
of the universal simple artinian ring of fractions of Mm(R) is the centre
of Mm(R), which lies in R, and, in particular, consists of units of R.

R is the ring of endomorphisms of the Mm(R) module

SQMm(E2)Mm(R), where S 1is the unique simple Mm(E2) module, and the units

of R induce the automorphisms of this module. By 2.18, the group of auto-
morphisms of this module are induced by the automorphisms of S as Mm(E2)

module; so the units of R 1lie in the copy of E inside it; therefore,

2
the centre of R 1lies in the copy of E2 inside it, and the centre of
M (R) S E < M (E,) must also lie in E,. However, if e is an element
m 1E m 2 2
of Mm(E2) - E, and f 1is an element of El - E, ef # fe, so that e

cannot be central. Therefore, the centre of Mm(R) which lies in E2 actually
lies in E. But this is the centre of its universal simple artinian ring of

fractions, as we saw at the end of the last paragraph.

Since this is all that is used in the following chapter, and the
remaining proofs of results towards conjecture 8.1 are complicated, the

reader may wish to bypass them for the time being; in this case, he may wish
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to look only at the examples which show that all function fields of curves

of genus O arise as the centre of a suitable simple artinian coproduct.

We wish to find the centre of the simple artinian coproduct of
two simple artinian rings over a common central subfield. The next two theorems
deal first with the non-Ore, and then with the Ore case. Of the two, the non-

Ore case is more complex.

Theorem 8.4 The centre of M (E;) oM (E,) 1is equal to k, provided
—_— m, 17 m, 2

that one of [M (E ):k] or [M (E,):k] is greater than 2.
ml 1 m, 2

Proof: The idea of the proof is to reduce to the previous theorem by re-

placing Mm (El) by a skew field closely related to it; more precisely, the
1
skew field will be a twisted form of Mm (El). A simple artinian ring S
1
is said to be a twisted form of a simple artinian ring S', if we have a

central subfield k of each of them, and a f.d. field extension L of k
such that SQkL = S'QkL. For a detailed discussion of twisted forms of
algebraic structures, the reader should consult Waterhouse (79).
A twisted form of Mm (El) that is a skew field need not exist;
1
however, the case where one does exist is an important special case:

Special case: there exists a central division algebra D such that

[D:kx] = m, DQkEl

such that EiQkL is simple artinian for i = 1,2,

is a skew field, and D has a Galois splitting field L

In this case, our idea is to show that

((DmkEl) g Mm2(E2))9kL = (Mml(El) ﬁ Mm2(E2))9kL. From theorem 10.3, we know

that (DR E.) oM (E.) has centre k; if C is the centre of
k17 m, 2

M (E/) oM (E)), it follows from the isomorphism that C® L =L, so
my 1 k M 2

C = k.

k

Consider the ring D oM (E2); then by theorem 8.3, it has

E
k1 X m2
centre k. Therefore, S = (DR E. oM (E ))® L is simple artinian and it

k'l g m, 2 3
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is a universal localisation of (DQkEl f M 2(Ez))ka =z (D&kElﬁkL) f M 2(E29 L)

which is isomorphic to Mml(EleL) g Mmz(EzﬁkL) an hereditary ring with

unique rank function, since each of the factors is simple artinian. On the

other hand, this ring is visibly isomorphic to (M_(E.) & M (E,))® L, which
my 1" k m, 2 k

has the universal localisation (M (El) o Mm (E2))QkL which is semisimple
1 k 2

artinian and hence weakly finite, and so must be a subring of S. But S
must be epic over it, and so it is actually the whole of S. Since S has

centre I, the centre of M (E.) oM (E,) 1is k.
ml 1 k m2 2

General case: In order to deal with the situation where there is no f.d.
division algebra D of the sort required for the application of the special
case, we extend the centre k until there is.

Let K be the commutative field k(xl,...,xm), where {xi} is
a set of commuting indeterminates. There is an automorphism ¢ of this field

of order m given by the cyclic permutation of the indices. We form the

ll
skew field D = K(Y:¢); let C Dbe the centre of D.
It is easy to see that DQkE is a Noetherian domain for any skew

field E, and so, DQkE has a skew field of fractions.

Let Ei be the skew field of fractions of EiQkC and let F'

be the skew field of fractions of F® C, where M (F) M (E.) oM (E)).
k m m 1 m 2
1 k 2
Then we have the equation Mm(F') = Mm (E!) oM (E!). If L 1is central

1 c M 2

in Mm (El) oM (Ez), then LﬁkC is central in M (E'!') oM (E!). So,
1 k ™ ™ c ™2

once we know that the centre of M (E!) oM (E!) is C, we shall know
m 1 m 2
1 k 2
that the centre of M (E.) oM (E,) is k.
m 1 m 2
k 2
1
2
However, [D:C] = m Dﬁk 1 is the skew field of fractions of

DQkEl and KECEi is actually a skew field for 1 = 1,2, so, by our first

case, the centre of M (E!) o Mm (Eé) is C, which forces the centre of
1 o 2
M (E.) oM (E,) to be k, as we wished to show.

my 1 k M 2

We wish to deal with the remaining case of the coproduct of two



141

simple artinian rings Sl and 82 such that [Si:k] = 2; clearly, both

are commutative fields.

Theorem 8.5 Let El and E2 be a pair of quadratic extensions of k. Then

the centre of El o E2 is purely transcendental of transcendence degree 1
over k. k

Proof: This was also shown by Cohn by a different method.
By Bergman (74') or a simple calculation, the centre of El i E2

has the form kltl], and E, ﬁ E2 is a free module of rank 4 over kl[t].

El ﬁ E2 must be the central localisation of E and must be of rank

)
1k E2'
4 over the central subfield k(t). Since it is not commutative, this must

be the whole centre,

We finish off this chapter by showing that all function fields
of curves of genus O over k occur as the centre of a suitable simple
artinian coproduct with amalgamation. We shall need the next lemma in the

proof of this.

~

n

Lemma 8.6 M2(L) Jo M, (L) M2(L[t,t—l]) for a commuting indeterminate t.

LXL 2

Proof: All embeddings of L x L in M2(L), are conjugate to the embedding

along the diagonal; so we may assume that the first factor has matrix units

ell' e12' e21, and e22, whilst the second factor has matrix units ell' f12'
f21, and e22.
Since f12 lies in ell(Mz(L) L %L M2(L))e22, it takes the form

(8 ED, when it is written as a matrix over the centraliser of the first

factor, and similarly, £ has the form (2 8), from which it is clear

21
that s = t_l. Since the centraliser of the first factor is generated by
the entries of these matrices, the centraliser is isomorphic to L[t,t"l]

where t is an indeterminate, since the dimensions of the coproduct we are

considering is infinite.

Suppose that F 1is the function field of a curve of genus O

over k; that is, FﬁkK = K(t) for some Galois extension K of k with

Galois group G, Then F 1is a twisted form of k(t) and so by twisted form
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theory, it corresponds to a suitable element of Hl(G,PGLz(K)) since
PGL2(K) is the automorphism group of k(x) over K (for example, see
Waterhouse (79)). Since PGLZ(Ki is also the automorphism group of MZ(K)
over K, this element o of H (G,PGLZ(K)) corresponds to some central

quaternion algebra D over k; moreover, Roquette (62) shows that F is

F
the universal splitting field of DF. Let L be a maximal separable
commutative subfield of Dp; [L:x] = 2.

Theorem 8.7 Name everything as in the last paragraph; then Mz(k) o DF = MZ(F);
L
so all function fields of curves of genus O arise as the centre of a suitable

simple artinian coproduct with amalgamation.

~ ~ -1
Proof: (M,(k) W D )@ L =M (L) Y M (L) =M (L[t,t "]) by the lemma above. So,
2 L Fk 2 L 2 2
(Mz(k) [} DF)QkL = M2(L(t)), since both sides of this equation are obtained
L
by central localisation of the corresponding sides in the first equation.
Let F' be the centre of Mz(k) o DF; then F'@kL F L(t), so
L
that F' is either purely transcendental or else it is the splitting field

of a suitable quaternion algebra D_,. However, M_(k) oD 2 F'@D_, so
F 2 L F kKF

that F' cannot be purely transcendental since it splits DF' Roquette
(62) shows that the universal splitting field of a central quaternion algebra
can split no other central simple algebra, so F' must be isomorphic to F,

which is what we want.
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9 FINITE DIMENSIONAL DIVISION SUBALGEBRAS OF SKEW FIELD COPRODUCTS

We intend in this chapter to make a detailed study of division
subalgebras of skew field coproducts; since the method developed may be
applied in much greater generality, we shall develop the results in this
context and then specialise the results to skew field coproducts. In later
sections of this chapter, we shall briefly consider its applications to

related rings.

Divigion subalgebras of universal localisations

For the purposes of this section, we shall assume that the rings

R,F,XK,k satisfy the following conditions:

Assumptions: R is a left semihereditary k-algebra, where k is a commuta-
tive field. p 1is a rank function on the f.g. projectives over R taking

values in %-Z such that the universal localisation of R at the rank func-
tion, Rp, is a simple artinian ring Mn(F) where F is a skew field with

centre K, where K is a regular extension of k.

On the whole, there is nothing to this beyond naming the rings
that we are interested in.

An extension of commutative fields K > k is said to be regular
if K@kL is a domain for all commutative field extensions of k.

It is useful to reformulate our problem; we wish to find whether
a f.d. division algebra D over k embeds in a simple artinian ring Mn(F)
with centre X, a regular extension of k. We can broaden this a little
and ask for what numbers does D embed in Mm(F). This has a useful re-~

formulation.

: : o : : Lo :
Lemma 9.1 Under the previous assumptions, D QkF is a simple artinian ring.

Let S be the simple module for DOBkF, and let [S:F1 =s; then D embeds
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in Mm(F) if and only if s divides m.

(s} ~
Proof: Let C be the centre of D; themn D ®F = DOQC(CQkF), SO any non-

k
zero ideal intersects non-trivially with CQkF. In turn, CQkF = (CQkK)QKF,
so any non-zero ideal of CQkF intersects non-trivially with CQkK which
o : s
is a field by our assumption on K. So, D ® F must be simple artinian.

We are left with the last sentencz of the lemma. If D embeds
in Mm(F), D° embeds in Mm(Fo), which is the endomorphism ring of the F
module Fm. Consequently, we can give F' the structure of a left FQkDo
module, and so, Fm is a direct sum of copies of S. The argument is

reversible,

It is important to bear this in mind, as most of the embedding
theorems will be stated in terms of the dimension over F of a simple
DOQkF module, since this actually gives us information about all possible
embeddings of D in matrix rings over F. It is also worth remembering
that the same information is conveyed by the rank as Mm(F) module of a
simple Mm(F)QkDo module, since the Morita equivalence of Mm(F)QkDo and
Fe, D° shows that the dimension of a simple F® Do module over F is m

k k
times the rank of a simple Mm(F)QkDo as Mm(F) module.

Theorem 9.2 Suppose that our previous assumptions hold, and let D be a

k

over Rp is equal to h.c.f.M{p(M)} as M runs through f.g. left RQkDo

f.d. division algebra over k; then the rank of a simple RpQ p° module

submodules of free RQkDo modules.

Proof: That the rank of a simple RkaDo module as an Rp module must

divide this h.c.f. is easily seen by considering the RkaDo modules,

s (o] s
RpQRM, where M is an RQkD module. We are left with the converse.

o
First, we see that RkaD is a universal localisation of

o
RQkD at the full maps with respect to p over the ring R. So we can use

Cramer's rule. Let e be an idempotent in Rka

isomorphic to the unique simple module S over RkaDo. Then, by 4.3, e

is stably associated to some map between f.g. projectives induced up from

p° such that (RkaDo)e is

o
some map between f.g. projectives over RQkD , 0:Q - P; we may choose this
map to be associated to ét 2 . The image of ét 2

o
(RkaD )t ® S, so this is also isomorphic to the image of our map RpQRa

is isomorphic to
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o
between f.g. projectives over RpskD .
: o :
Let M < P be the image of o over RﬂkD ; then the image of

(] , o
D )QR 2 DoP. Since D
p t

this map extended to R &

(o] o]
D° is (R@D)Mc (R ®
p K p k =

k
centralises the action of R and Rp, we may actually write this equation
as RpM < RDQRP. At this point it is useful to recall that 1.10 shows that
if N & R® is a f.g. submodule of RS, the rank of RpN as Rp module

is equal to the minimal rank of R modules N' such that N ¢ N' ¢ R®. 1In
the case we are examining, we have an RQkDo module M < P, and we wish

to find the rank as R module of RpM [ Rp@RP, since we know that RpM

is isomorphic to (RpmkDo)t ® s, and we shall be able to deduce from this
the rank of § as an Rp module. We know by 1.10 that the rank of RpM as
Rp module is the minimal rank of an R module M' such that M c M' c P;
our final step is to show that there is an RQkDo module above M having
this minimal rank; in fact, we shall see that if M' has the minimal rank,

o o o
so does D M' which is an R® D module since D centralises R.

k
Let {1 = do,dl...dm} be a basis of D° over k; then
o
D'M' = X4 .M'. diM' is isomorphic to M' as R module because the action

ol .
of D commutes with that of R, and diM' contains M since M 1is an

RQkDo module. If Ml and M2 are both submodules of minimal rank q in

p containing M, consider the exact sequence:

O-+M. NnM, - M &M M +M -0

1 2 1 2 1 2
which is split as a sequence of R modules since R 1is left semihereditary.
So, 2q = p(Ml n M2) + p(Ml + Mz); but both texrms on the right are at least
q, which implies that they are exactly gq. So p(Ml + M2) = q, and an easy
induction shows that p(DOM') = p(ZdiM') = .

We see that the rank as an Rp module of (R & Do)t ® S is

ok

equal to the rank as an R module of the R@kDo module, DOM', which is

a f.g. submodule of a free module. Consequently, h.c.f.M{p(M)} as M runs
through the f.g. RQkDo submodules of free modules divides the rank of S
as an Rp module. The converse has already been noted.

Division subalgebras of simple artinian coproducts

In this section, we apply 9.2 to the problem of finding the f.d.
division subalgebras of a simple artinian coproduct amalgamating a simple

artinian subring under the assumption that conjecture 8.1 holds; since we
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have verified this conjecture in chapter 8 for a number of cases including
the simple artinian coproduct amalgamating a central subfield, this is not

unreasonable.

There is a spurious generality in dealing with the amalgamation
over a simple artinian ring, since this may be reduced to amalgamation over
a skew field instead; whilst performing this reduction we set up the notation
and names for this section.

Let S=M (E), and S, =M (E,) for i=1,2, where S and

n i n, i

Si are simple artinian rings and S 1lieS in Si, and Ei is a skew field.
Since S embeds in Si, n divides ni, so let mi = n,/n; then on taking

i
the centraliser of Mn(k) in S5, 2 8§ we see that

185 72
~ . . 1
Sl ' 52 = Mn(Mml(El) o Mmz(Ez)), so we need only consider the ring
M (E.) oM (EZ)’ since Sl g 52 is the n by n matrix ring over it.

m 1 g m,

We shall call the rank function on Mm (Ei) modules oi and the unique rank
i

function on R modules where R =M (E ) “ M (E,) will be called p. Let
my 1" E m, 2

m= l.c.m. {ml,mz}; then p takes values in i-z, and the universal
localisation of R at o, Rp, was shown in 5.6 to be a simple artinian
ring, Mm(F), where F 1is a skew field; we use p' for the rank function
on Mm(F) modules.

Let C be the intersection of the centre of Mm(F) with E;
we recall that our conjecture states that either this is the centre of our
coproduct, or else, the centre is a function field of a curve of genus O

over C. At any rate, we are assuming that it is a regular extension of C.

Theorem 9.3 We use the preceding notation; further, we assume that the simple
artinian coproduct considered satisfies conjecture 8.1. Let D be a f.d.

division algebra over C; then the rank of a simple DOQCMm(F) module as
M_(F) module is h.c.f., .{p,(A,.)} as A,, runs through £.g. D°&M (E,)
m i,j i ij ij C mi i

modules.

Proof: We have R =M (E )Y M (E) and R M (E) oM (E)) =M (F).
m 1" E m2 2 0 my 1" g m, 2 m

Our conditions fulfil those required for theorems 9.2 to apply. Therefore,

the rank of a simple Mm(F)QCDo module is h.c.f.M{p(M)} as M runs through
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f.g. RQkDo submodules of free RQkDo modules. In order to change this to

the form of our theorem, we have to deal with a special case.
Special case: Assume that E has centre. C.

Then

O ~ (o] (o]
Rg D" ¥ (M (E)) gM (E))®D ¥ M (E)RD") EgéicDo(Mmz

(Ez)a Do). Since
1 2 1

C

o , - ,
E has centre C(C, EQCD is simple artinian, which allows us to use Bergman's

coproduct theorems. By 2.2, any RQCDo submodule of a free module has the

form M.@

(]
o (RRD ) & M,®
oy (5o D%) e

2 (E)e Do)(RQCDO), where Mi is a
my 2°°C

(o]
. = +
submodule of a free Mmi(Ei)QCD module. We see that p (M) pl(Ml) p2(M2),

and so, since the rank of a simple Mm(F)QCDo module as Mm(F) module
equals h.c.f.M{p(M)} as M runs through f.g. submodules of free RQCDO,
it is also equal to h.c.f., .{p.(B..)} as B,. runs over f.g. submodules
° i, 71743 ij
of free M (E, )2 D modules.
mi i C
Given any f.g. Mm (Ei)QCDo module, Aij' it has a presentation:
i

O
B, . M E, )@ D s
0 > -»s(m(i)C )-»Alj->o

ij i
and so, it is clear that h'g'f°ij{pi(A1j)} as Aij runs through every
.g. . i t .c.f.ip, (B, ‘.
f.g. module over Mm,(El)QCD is equal to h.c.f {pl( i])] as Bl:I runs

1

through f.g. submodules of free modules.

Before passing to the general case, we note the following corollary

which is of importance for a reduction to the case we have just dealt with.

Corollary 9.4 Let S be a simple artinian C algebra, and let D be a f.d.

division algebra over C; then the rank of a simple (SgC(x))QCDo module as

Sec(x) module is h.c.f.j{ps(Aj)}, where Pg is the rank function on S
modules, and Aj runs through the f.qg. SQCDo modules, In particular, if
the centre of S 1is a regular extension of C, the rank of a simple

(s 8 C(x))QCDo module over S 8 C(x) equals the rank of a simple S@cD°

module as S module.
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Proof: We saw in theorem 8.3 that the centre of S 8 C(x) lies in C, and
so, must be C; therefore, we can apply the first case to prove our corollary.

The last sentence follows since SQCDo is simple artinian in this instance.
General case

We return to the general case. We assumed that the centre of
M (E;) oM (E,) 1is either C or else the function field of a curve of
m " g m 2
1 2
genus O over C. In either case, it is a regular extension of C, and so,

by the last part of 9.4, the rank of a simple (Mm (El) o Mm (Ez))scDo

1 E T2
module as M (E.) oM (E,) module is the rank of a simple
ml 1 E m2 2
M (E) oM (E,) oC(x))@D° module as an M_ (E)) oM (E,) o C(x))
ml E m2 C ml E m2 C
module.

We shall show that M (E.) oM (E.) o C(x) 1is isomorphic to
my 1 g m, 2 c

the ring (Mm (El) o C(x)) o (M (E2) o C(x)).
1 c E o C(x) c
(o]

We note the two factors in this coproduct and also the amalgamated
skew field all have centre C bg 9.3, so that we may apply 9.4 to each of
the factors, and then our first case to the whole coproduct in order to find

the rank of a simple (M (F) o C(x))QCDo as M _(F) o C(x) module, which is
[o] [o]

the rank of a simple Mm(F)QCDo module as Mm(F) module, the number we wish
to find.

M (E,) oM (E,) o C(x) 1is the universal localisation of the
m, 1" g m, 2" ¢
hereditary ring T =M (E,) u M (E,) u Clx] at the unique rank function
my 1" g m, 2 ¢

on T,
Consider the subring M (E,) u Cclx] &M (E,) u (Eu clx],
m, 1 C m, 1 E C
i i
which has the universal localisation Mm (Ei) o (E o C{x)). Since
i E C
M (Ei) u Cclx] has a unique universal localisation that is simple artinian,
i
this shows the isomorphism M (E,) o C{x) =M (E,) o (E o C(x)).
m i c m i g
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Let Ei for i = 1,2 be the collection of full maps between f.g.

projectives with respect to the unique rank function on Mm (Ei) w C[x],
i C
i

and let I be the union of these maps induced up to T. We consider the

ring TZ and the ring T', where T' is the ring
M (El) o C(x)) u (M (EZ) o C(x)). We show that TZ is isomorphic
My c EocC(x) "2 c
C
to T'.

There is a homomorphism from Ty to T', sending Mm (Ei) to
i

Mm (Ei) by the identity map and x to x. Under this homomorphism, all
i

elements of I are inverted, so that it extends to a homomorphism from T

z
onto T', since its image contains Mm (E;) o Clx) for i =1,2.
C
i
Conversely, TZ is generated by a copy of Mm (E;) o C(x) and

i boe

a copy of Mm (E2) o C(x), which have as common subring E o C(x); there-
2 C C

fore, there is a homomorphism from T' to T_. which is clearly inverse to

z
the homomorphism in the last paragraph.

T' has the universal localisation

M (El) o C(x)) o (M (EZ) o C(x)) which must be the universal
™ c EocC(x) ™2 c
C

localisation of T that is simple artinian; this is M (E.) oM (E,) o C(x),
my 1 g m, 2 ¢

which proves the isomorphism we need.

Since E o C(x) has centre C, we may apply the first part of
o]

the proof of this theorem to conclude that a simple

M (E) ocC(x)) o M (E,) o C(x))mCDo module has rank as
1 c EocClx) ™2 c
C
(Mm (El) o C(x)) o (Mm (Ez) o C(x)) module equal to
1 c Eo C(x) 2 c
C

h.c.f. {pl(Al), p2(A2)} where Ai is the unique simple

M (E,) ocC(x))eD° module, and 5. is the rank function on
mi i e C i

M (E,) o C(x)) modules.
m, i g
i
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9.4 L (A, i 1l to h.c.f. (A, A
By , pl( l) is equal to c j{pl( 13)} as 19 runs
over f.g. M (E,)® D° modules.
m, i C
i
Putting this together, we find that the rank of a simple

o :

(Mm(F) 8 C(x))QCD module as Mm(F) module is h'c'f'i,j{pi(Aij)} as A

runs through f.g. Mm (Ei)QCDo modules. We have already remarked that if
i

ij

conjecture 8.1 holds for M (E ) oM (& ), then this number is the same
my l gm 2
as the rank of a simple Mm(F)QCDo module as Mm(F) module by 8.4. This

completes the proof.

As we saw in 9.1, this result gives us all the embeddings of D
in MS(F) for varying s. The major part of the rest of this chapter
illustrates what exactly this theorem means. Before ending this section, we

notice the following simple corollary.

Theorem 8.5 Suppose that the simple artinian coproduct Mm (El) o Mm (E,)

1 Yo My 2
satisfies the conditions of theorem 8.3; then the rank of a simple
o 3
D Qc(Mml(El) g Mm(E2)) module over Mml(El) g Mmz(E2) is the rank of a

o
simple D ® (M (E.) oM (E.)) module over M (E,) oM (E,).

C m, 1 c m, 2 my 1" m, 2
Proof: Compare the formulas given by 8.3; they are identical.

Finally, we could have stated 8.3 for the simple artinian co-

product of arbitrarily many simple artinian E-rings Mm (Ei) provided that
i

l.c.m. {mi} exists. The proof does not differ from that given in 8.3.

Division subalgebras of skew field coproducts

Here, we shall discuss more explicitly the consequences of
theorem 9.3; we shall organise this by discussing when a division subalgebra
of a skew field coproduct must be conjugate to a division subalgebra of one
of the factors. This is in analogy to what is known to hold for group co-
products. It usually fails here, but our investigation does have some
interesting consequences.

By 9.5, we may as well restrict our attention to skew field co-

products over a central subfield k, since the division subalgebras of skew
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field coproducts amalgamating other skew subfields may be reduced to this
case whenever we can calculate them. By 8.3, the only case that at present
eludes us is the skew field coproduct of two skew fields El and E2 both of
which are of dimension 2 on either side over the amalgamated skew subfield
E. Por much of this section, we shall further restrict our attention to the
case where each of the factors of the skew field coproduct over the central

subfield k are f.d. over k.

Theorem 9.6 Let {Ei: i=1ton} be f.d. division algebras over k, and

let t = l.c.m.i {[Ei:kj}. If D is a f.d. division subalgebra of o Ei’
k

then [D:k] divides t.

k
[a,.:k] =[A, :E _I[E, :k] which divides [A,.:E Jt. If D embeds in oE,,
ij ij i i ij i k 1

Proof: [D:k] divides [Aij:k] as Aij runs through f.q. p°e Ei modules.

h.c.f., {[A, .:k]} =1, and so, [D:k] divides t.
1,3 1]

The next result has slightly more general hypotheses, and

clearly applies to the cases we are considering.

Theorem 9.7 Let {Ei: i =1 ton} be skew fields satisfying a polynomial
identity, and let D be a f.d. division subalgebra of oEi; then the poly-
k

nomial identity degree of D divides l.c.m.i{p.i. degree Ei}.

o
P : = l.c.m. .1, .
roof Let p l.c.m i {p.i.degree Ei} Let Aij be a D QkEi module,

and let m,, = [A, . :E,]. Then the centraliser of the action of E, on A,,
ij ij i i i

J
is isomorphic to Mm (Eio), and DO embeds in it. By Bergman, Small (75),
i3
p.i.degree D = p.i.degree p° must divide p.1l.degree M (Ei) which is
ml]
just mij(p.l.degree Ei). If D embeds in iEi, h'c°f'i,j {Mij} = 1; so

that p.i.degree D divides p.

Our next theorem is more by way of example to show that the

bounds in 9.6 and 9.7 are in general best possible.

Theorem 9.8 Let Dl and D2 be f.d. division algebras over k such that

[Dl;k] is co-prime to [Dz:k]; then D,@D, embeds in D, i D,.



152

Proof: We have a simple Diﬁk(Dlﬁsz)o module of dimension [D.:k] over

Di for i 2 j; by 9.3, there is a simple (D g D )9k(D19kD2) module of
i ; i D .
dimension 1 over D1 i D2, that is, Dlﬁsz embeds in 1 i D2

Our next result in contrast to the last one gives us a number of
cases where a division subalgebra of a skew field coproduct must be conjugate

to a division subalgebra of one of the factors.

Theorem 9.9 Let E be a f.d. (possibly non-commutative) Galois extension
of k; then any f.d. division subalgebra of E o k(x) is conjugate to a
k

division subalgebra of E.

Proof: Let C be the centre of E; then C is a Galois extension of k
with Galois group G, where G 1is the group of outer automorphisms of E

over k.
DOQkC = &Si, where each Si is a simple algebra over C, and
i
the group G acts transitively on this set.

°, z 0% z z
D ﬁkE = (D @kC)QCE (fsi)ch i(sich)’ and the group G

permutes the simple algebras S.QCE transitively.

Therefore, [A :E] = [A :k] where Ay is a simple S,2 E

1C
module, and the dimension of a 51mple D Q (E o k(x)) module must equal
k
the dimension of any simple D QkE module, by 9.3, since they are all the
same., SO0 D embeds in E o k(x) if and only if D embeds in E.

k
Since the Noether, Skolem theorem states that all embeddings of
a f.d. division algebra in a central simple artinian k-algebra are conjugate,
and E E k(x) has centre k, any embedding of D in E o k(x) 1is conjugate

k
to its embedding in E.

We shall restrict our attention for the time being to the co-
product of commutative f.d. extensions of k, and of rational function
fields in 1 variable over k. 9.7 shows that any f.d. division subalgebra
of such a coproduct must be commutative. We are able to extend 9.9 a little

in this context.

Theorem 9.10 Let E be a normal extension of k; then any f.d. extension

of k in E o k(x) 1is conjugate to a subfield of E.
k
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Proof: Let C be a commutative subfield of E o k(x), [C:k] < » ; then
k

h.c.f. {[Ai:E]}= 1, where Ai runs through field joins of E and C
inside the algebraic closure of k. But since E 1is normal, there is a
unique such field join over k, and so, [Ai:E] = [Aj:E] = 1. That is, C
embeds in E. Conjugacy follows from the Noether, Skolem theorem as before.
Before we use these results to get further restrictions on the
f.d. division subalgebras of skew field coproduct of commutative extensions
we need some embedding lemmas for general skew field coproducts. In order to
explain the proof cleanly we shall need the next definition.
Consider a tree whose edges are labelled by skew fields and whose
vertices are labelled by rings so that if RV is associated to the vertex
v and De is the skew field associated to an edge e on which v lies
there is a specified embedding of De in RV; the tree coproduct associated
to this tree of rings is generated by copies of the vertex rings Rv
together with the relations that if ie and Tte are the vertices of the

edge e then Rie n RT = De; it is easy to see that this tree coproduct

e
may be got by a series of coproducts amalgamating skew fields and so if all
the vertex rings are skew fields the tree coproduct must be a fir by Bergman's

coproduct theorems.

Lemma 9.11 1/ Let {Ei:i =1 to n}, {Fi: i =1 ton} be families of skew
fields such that E, € F_; then oE, embeds in OF,.
i i k L x i

2/ OoE over a finite indexing set embeds in E o k(x).
k k

Proof: The ring UE,

P

at the full matrices over uEi is the tree coproduct of rings associated to
k

embeds in LJFi; the universal localisation of LiFi
k

the tree of rings:

Fn Fl
E E
n 1
\EEl:’
-
- \ \\\
\
Ei \
\
F
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which is a fir since the vertex groups are skew fields; its universal skew

field must be oFi since this is the only universal localisation of oFi
k k

that is a skew field.

For the second part, oE over a finite indexing set embeds in
k

oE over the countable indexing set Z; this has the automorphism ¢ of
k
infinite order that shifts the indexing set by 1l; we form the skew field

(oE) (x:0) which it is easy to see is isomorphic to E o k(x).
k k

We can put these results together to find a useful restriction
on the f.d. extensions of k 1lying in the skew field coproduct of f.d.

commutative extensions.

Theorem 9.12 Let {Ei:i = 1 to n} be a finite collection of f.d. extensions

of k, and let D be a f.d. division subalgebra of oEi; then D is
k

commutative, its dimension divides 1.c.m.{[Ei:k]}, and it can be embedded in

the normal closure E of a field join of the fields Ei'

Proof: The first two conditions follow from 9.5 and 9.6. We have shown that
oEi embeds in E o k(x), and now we can apply 9.10.
k k

We give an example to show that these conditions are not

sufficient for a field to embed in a given skew field coproduct.

Example 9.13 Consider D(V2) o Q(V3); the normal closure of ©(v2,V3) is
D

itself, and D(¥6) is a subfield satisfying the consequences of 9.11. But
Q(/G)BQQ(/Z) and Q(/G)BQQ(/3) are both fields, so that by 9.3, D(/6)
does not embed in D(¥2) o D(V3).

As has become clear, the coproduct of separable extensions does
not behave particularly well with respect to the property that f£.d. division
subalgebras are conjugate to a subfield of one of the factors; it comes as
a pleasant surprise that purely inseparable extensions work extremely well

in this context.

Theorem 9.14 Let oEi be the skew field coproduct of the skew fields Ei;

if C 1is a purely inseparable extension of k 1lying in OEi’ it is
k
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conjugate to a subfield of some Ei'

Proof: Let p be the characteristic of k; we shall show that the dimen-

sion over Ei of a simple C® Ei module is a power of p, so that C

Xk
embeds in oEi if and only if it embeds in some Ei; as usual, the Noether,

Skolem theorem completes the proof.

Let Ci be the centre of Ei; then the centre of CQkEi is

CQkCi, which is a local artinian ring, because C is a purely inseparable

extension of k, and so, has a unique field join, C', with any field

extension, Ci’ of k. C' is a purely inseparable extension of Ci’ so
[C':Ci] is a power of p. C'QkEi is the simple artinian image of Cg
modulo its radical, which implies that the dimension of a simple C®

KEi
kEi
module over E, must divide [C':Ci] which is a power of p. We conclude

the proof as was indicated previously.
This fits well with earlier results.

Theorem 9.15 Let oEi be a skew field coproduct of finitely many f.d.
k
purely inseparable extensions of k; then any f.d. subfield of iEi is

conjugate to a subfield of one of the factors.

Proof: By 9.12, any subfield must lie in the normal closure of a field join
of the fields Ei' But this is simply the unique purely inseparable field
extension of k generated by the fields Ei' So, any such subfield is

purely inseparable, and, by 9.14, it must be conjugate to a subfield of one

of the factors.

There is a further situation, where one could hope to prove that
a f.d. subfield of a skew field coproduct of commutative fields would be
conjugate to a subfield of one of the factors; when each factor has dimension
p over k, where p is a prime. This turns out to be false in general, but
the set of primes for which it is true is an interesting collection. The next
result depends on the classification of finite simple groups, since we use

Cameron's classification of doubly transitive permutation groups {(Cameron 8l).

Theorem 9.16 Let p be a prime not equal to 11 or (qt—l)/(q—l), where
q 1is a prime power, and t > 2. Then, if {Ei} is a finite collection of

field extensions each of dimension p over k, any f.d. subfield of oEi
k
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is conjugate to one of the factors. For the proscribed primes, there are

counter-examples.

Proof: Suppose that E embeds in OEi’ [E:k] < », and that E ¢ Ei for
k

any i. By 9.5, [E:k] =p; and E cannot be purely inseparable by 9.14.

So, it is separable.

Since E embeds in OEi' there is some i for which
k

1
F n 2 2. Since E * Ei' FFij:Ei] ¥ 1 for any j. Because

E@E, = i’
L i

3
Z[Fij:Ei] = p, h.c.f.n{r_Fij

implies that E lies in the normal closure, N, of Ei by 9.10. So, E

L =]

:Ei]} =1, so that E lies in E, ﬁ E, which
:
is a separable extension of k. Let G be the Galois group of N over k.
Since G acts faithfully on the roots of an irreducible polynomial for a
generator of Ei over k, p divides |G|, but p2 does not. Since
[Ei:k] = p = [E:k], we see that the subgroups H' and H that fix Ei
and E respectively are inconjugate p-complements in G; therefore, by
Hall's theorem, G cannot be soluble.

The actions of G on the right cosets of H and of H' define
non-isomorphic faithful transitive actions of G on a p-element set. By
Burnside's theorem (ll) we see that transitive actions of an insoluble group
on a p-element set are doubly transitive. Cameron (81) shows that this can
happen only when p = 11 or is of the form (qt—l)(q-l) for a prime power
q, and t > 2,

For p = 11, there are two different actions of PSL{2,11) on
11 points; for p = (qt—l)/(q~l), the actions are given by the action of
PGL(g,t) on the points, and dually, on the hyperplanes of projective space.

We have reached a contradiction provided that p # 11, or
(qt-l)/(q—l) for a prime power q and integer t > 2. So we need to
examine what actually happens in these cases. Given a group G having two
such faithful actions on p-element sets, we have two inconjugate p-complements.
We may find a Galois extension of fields N > k, having Galois group G,
and the two p-~complements give us two non-isomorphic field extensions of Xk,
both of dimension p over k with isomorphic normal closure. Call them E
and E'; then E embeds in E' o E', and vice versa. Our first example

k
occurs when p = 7.

It is of some interest that at present we are unable to tell
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whether the skew fields E o E, E o E' and E' o E' where E and E'
k k k

are as described in the last paragraph of the proof above are isomorphic.
The invariants that we shall develop in chapter 10 are not good enough to

settle this point.

Transcendence in skew fields

One question that arises naturally is whether the coproduct of
skew fields having no elements algebraic over k also has this property.
We shall present a counter-example to this in the course of this section,
as well as giving a counter-example to a conjecture of Cohn and Dicks (80),
connected to suitable ideas for transcendence in skew fields. We shall also
give the definitions for notions of transcendence that do behave well for
the skew field coproduct. First, however, we present a positive result in

the direction of our original question.

Theorem 9.17 Let C be a commutative subfield of oEi such that
[c:x] = pn for some prime p; then one of the skew fields Ei contains

elements algebraic over k.

Proof: We lose nothing by assuming that C is a primitive extension of k,
C = k(a).

i; if CﬂkLi is not a field, the
irreducible polynomial of o over k splits over Li’ and the co-

Let Li be the centre of E

efficients of the factors generate an algebraic extension of k in Li.

k k L

So, assume that C® L, 1is a field; then C® E, = (Ce L. )@ E, is simple
x i i i i i

artinian, and so, the dimension of a simple CQkEi module over Ei divides

[c:k] = pn, and must itself be a power of p. Since C embeds in OEi'
k
11.4 shows that the h.c.f. of these numbers is 1, and therefore, there is

some 1 for which the simple C® Ei module has dimension 1 over Ei; that

X
is, C embeds in Ei'

Of course, we cannot conclude that C embeds in some Ei even
when [C:k] is prime, as we saw in 9.16.

We can re-~phrase 9.17 in the form that an algebraic extension of
k 1lying in the skew field coproduct of two skew fields having no algebraic
elements must have dimension divisible by at least two primes. We shall find

such a subfield of dimension 6.
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Example 9.18 Let E > k be an extension of fields such that [E:k] =6,

and there are no intermediate fields; this occurs, for example, if the Galois

group of the Galois closure of E over k |is 56. We shall construct a
pair of skew fields El and E2 such that E embeds in El <] E2 although
k

neither El nor E2 have any elements algebraic over k.

Let E, be the skew field such that M2(El) = M2(k) o E, and
k

1

let E

5 be the skew field such that M3(E2) = M3(k) o E. Certainly, E
k

embeds in El o) E2 since there is a simple EQkEl of dimension 2 over El,

and a simple EQkE2 module of dimension 3 over E2. Since h.c.f.{2,3} =1,

it is clear that E embeds in El <] E2. It remains to show that El and
k
E2 have no algebraic elements over k.

Let C be a commutative subfield of El such that [C:k] = n.

Since C lies in El, and M2(El) = M2(k) E E, there is a simple
M2(k) ﬁ E module of rank % over M2(k) E E, so that by 1l1l.4,

% = h.c.f. {n/2, [Cj:E]} as Cj runs through simple CﬁkE modules. So n
must be odd, and the equation 1 = h.c.f. {n,[Cj:E]} holds. Since

[CﬂkE:E] =n, n is a sum of the numbers [Cj:E], and so,

1= h.c.f.{[cj:E]}, which is equivalent to the hypothesis that C embeds

in EoE and n is odd. By 9.6, n divides 6, so n = 1,3. Since
k

h.c.f.{[Cj:E]} =1, it follows in either case that for some j, [Cj:E] =1,
that is, C embeds in E. By assumption, E has no non-trivial subfields,
so that C = k.

We have shown that E has no non-trivial algebraic extensions

1
of k inside it; an entirely similar argument shows that E2 has no non-
trivial extensions either. Thus El <] E2 is a coproduct of skew fields both
k

of which have no algebraic elements over k except for those in k, but

the coproduct does have non-trivial algebraic elements.

We give some variants of the definition of transcendence that do
behave well with respect to the coproduct construction, and discuss the
connections of these notions with those in (Cohn, Dicks 81).

We define a skew field to be n-transcendental over a central sub-
field k if for all f.d. division algebras D over k of p.i. degree
dividing n, D® E is a skew field. We define a skew field to be totally

k
transcendental over k if it is n-transcendental for all n. It is clear
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that n-transcendental implies that there are no algebraic elements over k
that are not in k. The skew fields of example 9.17, El and E2’ are not

even l-transcendental.

Theorem 9.19 The coproduct of n-transcendental skew fields over k 1is n-
transcendental. Therefore, the coproduct of totally transcendental skew

fields is totally transcendental.
Proof: The proof is clear from 9.3.

We consider the definitions of Cohn and Dicks. A skew field E
is said to be regular over k, if EﬁkK is a domain for all commutative
fields K over k. This is shown in their paper to be equivalent to EQkE
is a skew field where k 1is the algebraic closure of k. So regular is
equivalent to l-transcendental.

Cohn and Dicks define k to be totally algebraically closed in

E if E® L 1is a skew field for all simple algebraic extensions L of k.

k
They ask whether this together with the condition that Eﬁkkp—

field where p 1is the characteristic of k, and kp“m is the maximal

is a skew

purely inseparable extension of k imply that E is l-transcendental. We
shall find that there are a number of counter-examples to this that arise as

a consequence of the next theorem, which is a perhaps more natural result.

Theorem 9.20 Let F 2 k be a normal extension of commutative fields such
that [F:k] = pn, where p is a prime. Let D be the skew field such that

Mq(D) = Mq(k) o F, where q = pn-l. Then for any algebraic extension E
k

of k, DﬁkE has zero-divisors if and only if E o F.

Proof: Let [E:k] = e; as usual, we shall use 9.3. The rank of a simple
Mq(E) module as Mq(k) module is e/q. The simple modules for EﬁkF
correspond to field joins of E and F, and there is a unique such field
join up to isomorphism over k since F 1is a normal extension of k. We
have the following diagram, where the dimension of the extensions is the label

of the edges.
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n-m
e/p

B / \ o/p"
\

EnF

/p

We see that [EF:F] = e/pm and so the rank of a simple M (D)@, E
module is h.c.f. {e/q, e/pm}. DQkE has zero-divisors if and only ifqthe
rank of a simple Mq(D)QkE module is less than e/q. Since e/q divides
e/pm or vice versa, this number is less than e/q if and only if e/pm
divides e/q and is not equal to it. But m < n, and q = pn-l, so this
happens exactly when m = n. 1In this case, [EF:k] = e, so that E

contains F.

Theorem 9.21 Let F > k be a normal extension of k that is neither simple

nor purely inseparable, and let [F:k] = pn. Let D be the skew field such

that Mq(D) = Mq(k) o F, where q = pn_l. Then D@kkp—w is a skew field,
k

and k 1is totally algebraic closed in D, although D 1is not 1-

transcendental over k.

Proof: In 9.20, we showed that EQkD has zero-divisors for a f.d. extension,

E, of k 1if and only if E contains F. If E contains F, it cannot
be a simple extension nor can it be purely inseparable. Therefore, D@kkp_w
is a skew field, and k 1is totally algebraically closed in D, but D is

not l-transcendental over k.

We have used skew fields D of the form Mt(D) = Mt(k) o E
k

where E 1is a f.d. commutative extension of k as our main construction
recently. Before leaving them, we mention one further property that has some
interest. Let [E:k] = n, where E is a simple extension E = kl{al. Let

t divide n; and let D be the skew field such that Mt(D) = Mt(k) o E.
k

Then the dimension of a simple DQkE module over D is t as one checks

from 9.3. That is, the minimal polynomial of over k splits over D into

n/t factors of length t.
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Generic partial splitting skew fields

Amitsur (55) and Roquette (62) developed the notion of the
generic splitting field of a central simple f.d. algebra over a field k.
This construction has a natural non~commutative analogue, which we shall
develop and study in the course of this section. We shall investigate its
f.d. division algebras using the techniques developed earlier for such
questions.

Let D be a central division algebra over the field k,
[D:k] = n2, and let m divide n2. A skew field E is said to be an m~
splitting skew field of D if DQkE = Mm(S) for some simple artinian ring
S. A commutative field can only be an m-splitting field when m divides
n; however, DO is an nz—splitting skew field of D. There are universal
or generic m-splitting fields that are commutative for dividing n, and
we intend to show that there are suitable skew analogues of these construc-
tions. We shall construct a ring that represents the functor
Hom(Mm(k),DQk_) in the category of k-algebras, and then show that it has a
universal skew field of fractions, which will be the skew field that we are

interested in.

Theorem 9.22 The functor Hom(Mm(k),D@k_) is representable by the k-~algebra
R, where D ﬁ Mm(k) = DQkR. In particular, E 1is an m~splitting skew field

for D if and only if Hom(R,E) 1is not empty.

Proof: Let a € Hom(M(k)),D@kA) for some k~algebra A. Then

lua:D ﬁ Mm(k) -+ DR A is a homomorphism and must take the centraliser of

k
D in the first ring to A, which gives us a map from R to A.
Conversely, given B:R + A, we have a map 1 QB:DEkR + DﬂmA,
- ~ B8
which induces a map RB:M (k) - M (k) % D = D® R » DR A.
m m k k

The two processes above are mutually inverse, so R represents
the functor as we wished to show. The last sentence is trivial.

We shall look at R a little more closely, but first we tighten
} is

up the notation. The ring representing the functor Hom(Mm(k),D@k_

denoted by R(D,m).

Theorem 9.23 R(D,m) is an hereditary domain whose monoid of f.g. projectives
is generated by the free module of rank 1, and a projective P satisfying

. n< .~ m . . .
the relation R = p , and no other relations. Therefore, it has a unique
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rank function on its f.g. projectives, and this rank function takes values

in Z., So, it has a universal skew field of fractions.

Proof: D@ R =D Y Mm(k), so

~ ~

0’2, (DU M (k) T M ,(k) UM (D), where in this iso-
k' k m n po ™

~

o
M 2(R) ¥ D' (D@ R)

morphism R 1is the centraliser of the first factor.
By Bergman's coproduct theorems, 2,18, R is a domain and all
f.g. projectives are induced up from the factors in the coproduct representa-

tion an(R) = an(k) LéMm(DO). Morita equivalence shows that the monoid
D

of f.g. projectives is as stated, and R is hereditary.

We have shown all but the last sentence. Since Pm = an, its
rank under any rank function can only be n2/m, so that there is a unique
rank function, and the universal localisation of R at this rank function

is a skew field.

Let U(D,m) be the universal localisation of R(D,m) at the

unique rank function. We shall call it the universal m-splitting skew field

of D. We wish to investigate the f.d. division algebras over k that embed

in it.

Theorem 9.24 Let U(D,m) be the universal m-splitting skew field of D;
then the f.d. division subalgebras of U(D,m) are isomorphic to the f.4.
division algebras E, of p° such that h.c.f.{[Ei:k],nz/m} =1. In
particular, if p divides m implies that p divides n2/m for all primes

p, U(D,m) has no elements algebraic over k except for those in k.

Proof: We recall from 9.23 that U = U(D,m) is the universal skew field of

fractions of R, where M 5(R) ¥ M 5(k) UM (Do). Hence,
n n p° ™

M 5 (U) =M 2(k) o M (Do). By 9.3, the rank of a simple Eoﬁ
n n o m

M 5(U) module
D n

k

over an(U) is given by h.c.f.{FE:k]/nz,[S:Do]/m} where S is the unique
simple EoﬁkDo module. So, [s:p°1 divides [E:k].

If E embeds in U, we know that this number is l/n2, which
happens if and only if [s:0°1 = 1, and h.c.f.{[E:k]/nz,l/m} = l/n2, which

is equivalent to the two statements:
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1/ E embeds in D°, and
2/ h.c.£.{[E:k],n’/m} = 1.
This proves all but the last sentence, which is an easy corollary.

It occurs for example, if n = m.

Division subalgebras of the universal skew fields for rings with
weak algorithm

This final section is rather technical; we use 9.2 to describe
the f.d. division subalgebras of the universal skew field of fractions of a
ring with weak algorithm. For the record, we define what a ring with weak
algorithm is; however, the reader is more likely to gain some understanding
of the notion by reading chapter 2 of (Cohn 71). Rings with weak algorithm
are a generalisation of tensor rings of bimodules over skew fields.

Let R be a ring with a filtration over N; that is, we have
a function v from R to N such that vi{x) 2 0 for x 2 0; Vv{0) = —»;
vix-y) € max{v(x), vi{y)}; vixy) € v(x) + v{y); v(l1) = 0.

Let {ai:i e I} be a subset of the elements of R; we say that
it is right dependent with respect to the filtration v if there exist
elements {bi:i e I} that are almost all O, such that
v(Zaibi) < maxi {v(ai) + v(bi)} or else, some ai is oO.

We say that an element a of R is right dependent with respect
to v on the set {ai} if there exist {bi:i e I} almost all O such
that vi(a- Eaibi) < v(a) whilst v(ai) + v(bi) < v{a) for each 1i.

We say that R satisfies the weak algorithm with respect to
the filtration v, if given any set of elements {ai:i =1 to n} right
dependent with respect to v such that v(ai) < v(aj) for i < j, then
some ai is right dependent with respect to v on the preceding set
{al'aZ"'ai—l}'

We shall assume the results of chapter 2 in (Cohn 71) throughout
this section. In particular, R 1is a fir whose universal skew field of
fractions we call U. Ro, the set of elements of whose filtration is O
together with O forms a skew field, and R 1is a two-sided Ore domain only
when it takes the form R = Ro[x;u,GJ, where o 1is an automorphism and §
is a (l,a)-derivation. When R is not a two-sided Ore domain, the centre
of U 1lies in Ro by 8.1, since Ro is the group of units of R. When
R==Ro[x;u,6] we shall need to use different techniques which we present at
the end of the section. In the case where R 1is not two-sided Ore, let K

be the centre both of R and U.
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Theorem 9.25 Let R be a ring with weak algorithm with universal skew field
U and Oth term in its filtration Ro; let D be a f.d. division K-algebra.
Then the dimension over U of a simple DOQKU module is equal to
h.c.£f. {[Ni:Ro]} as Ni runs through the f.g. DOQKR0 modules.
Proof: By 9.2, the dimension of a simple DOQKU module is given by
h.c.f. {[Mj:Ro]} as Mj runs through f.q. DOQKR submodules of free
modules. For ease of notation, we shall consider left D, right R bi-
modules on K-centralising generators, since these are clearly the same
thing.

We recall that R 1is filtered by

R.CR, €CR, € .v.... ©R, URi = R.
Let F be a free left D, right R bimodule on the set X,

which we filter by
DXRO c DXR:L c DXR2 C veeevs © DXR = F,

For £ ¢ F, we define v (f) = min {r:f ¢ DXRr}. Let M be a f.g. left D,
right R sub-bimodule of F. We construct a basis for M as an R-module
from which it will be clear that the dimension of M as an R-module is a
sum of the numbers [NiéROJ for D, R bimodules N,.

[¢]

We choose our basis by induction. Let Mo = 0. Suppose that at

the ith stage we have a D, R submodule of M generated as R module by
elements {aj} lying in DXRn such that {aj} is a basis of this module,

M, , and no element of M - M, lies in DXR , where DXR is minimal
i-1 i=-1 n n
subject to containing aj.
Let A, = {ata e M - M, _, v(a) is minimal}. Since M, and
i i-1 i-1

M are invariant under the action of D, it is clear that Ai + Mi-l/Mi—l

is a left D, right R bimodule; moreover, it is a consequence of the

1’ l/Mi-l

R together with the set {aj} is a basis for Mi as R module.

[¢]

weak algorithm that if Mi = AiR + Mi- a basis for Ai + Mi— over
[¢]

Since M 1is f.g., M= Mm for some m, and [Mi:R] is finite

for all i. But it is clear that M +l:R] - [Mi:R] is equal to the dimen-

i

sion of some D, RO bimodule. So, we see that the dimension of a simple

D, U bimodule is equal to the h.c.f.{[M:R]} for f.g. left D, right R

bimodules, which must be divisible by h.c.f.{[Ni:Ro]} for f.g. D, Ry
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bimodules by our argument. However, given a D, RO bimodule N, we con-
struct the D, U bimodule N@ U. It is clear that [NQR U:Ul = [N:RO],
and so, the dimension over U of a simple D, U bimodule must divide

h.c.f.{[Ni:RO]} which forces equality.

To complete this section, we shall deal with the two-sided Ore

case. We recall that in this case, R = Ro[x;a,d] where R is a skew field,

[¢]
o is an automorphism and § is a (l,a) derivation.

Theorem 9.26 Let U be the universal skew field of fractions of Ro[x;a,dj.
Let K be the intersection of the centre of U with RO. Then any f.d.
division K-algebra lying in U is isomorphic to a skew subfield of R_.

e}
Proof: We shall show that there is a valuation on U trivial on R whose
residue class skew field is identified with RO. If D 1is a f.d. division
K-algebra in U, the valuation must be trivial on D since it is a f.d.
extension of X, and so, the valuation induces an embedding of D in RO.

The construction of the valuation essentially occurs on p.l8 of
Cohn (77). We summarise it briefly here.

Set y = x_l and write out the commutation formula:
rx = xra + rs, so yr = ray + yrdy.

The set of power series over RO in y with co~efficients on
the left and the stated commutation rule (which allows us to re-write any
ekpression in RO and y as a power series of the given form) is a
principal valuation domain; the ring RO[x;a,G] embeds in its skew field
of fractions by x - y_l. The residue class skew field of the valuation
is RO, and the valuation is trivial on RO as we wished, so our proof

is complete.
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10 THE UNIVERSAL BIMODULE OF DERIVATIONS

When studying a homomorphism of commutative rings ¢:R -+ S, it
is often useful to look at the module of relative differentials of S over
R. There is a non-commutative analogue of this construction, the universal
bimodule of derivations, which, in many situations of interest to us here
is very powerful. It will enable us to find useful numerical invariants of
certain skew field coproducts, that allow us to distinguish between some of
them; in particular, we shall be able to distinguish between free skew fields
on different numbers of generators. On the way, we shall be able to
characterise those epimorphisms from an hereditary k-algebra to skew fields
that arise as universal localisations by the associated map on the bimodule
of derivations over k.

The results in the first section of this chapter from 10.4 to
10.6 that calculate the universal bimodule of derivations for certain

universal constructions are all from the work of Bergman and Dicks (75,78).

Calculating the universal bimodule of derivations

In the commutative case, we look at derivations from the commuta-
tive ring to modules over it, that vanish on a given subring; the natural
non-commutative generalisation of this is to look at derivations to bimodules
over the ring; if R is an Ro—ring we are interested in derivations that

vanish on the image of R On general principles there is a universal such

o
derivation §&:R - QR (R); that is, the functor DerR (R,M) which associates
(o] 0

to a bimodule M the set of derivations from R to M that vanish on R

is naturally isomorphic to the functor Hom . (2. (R),M) where the
R-bim. Ro
derivation associated to a particular homomorphism a:QR (R) * M is the

(o]
composite &8a. We can construct the bimodule in the following way: for each

element r of R, we have a generator d&r, and we impose the relations

§s = 0, for s in the image of RO, §(r

1t r2) = G(rl) + 6(r2), and
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G(rlrz) = rld(rz) + G(rl)rz. It is clear that the map §&:R » QRO(R) has

the desired universal property; however, the nature of this bimodule is
opaque from this description, so we shall first give an alternative
description, and then we shall use it to simplify our presentation above.
Our new description gives us a useful connection between the universal bi-

module of derivations and homology.
Theorem 10.1 Let R be an Ro-ring; then there is an exact sequence:

m
o - QR (R) - RQR R+ R+ O,
O O
where m is the multiplication map, and the universal derivation in this

representation is given by 6(x) = x®1 - 1@x.

Proof: Certainly, the map from R to ker(m) given by d:x + x@l - 1®x
is a derivation vanishing on RO' So the composite of this derivation with

any bimodule map gives a natural transformation from Hom (ker (m), )

R-bimod

to the functor DerR (R, ), which must be injective since the kernel of m

0
is generated by the elements x81 - 1€x.

Given any derivation vanishing on R d':R >+ M where M is

ol
an R,R bimodule, we define a bimodule homomorphism from ker(m) to M

- v = - [ 3
by the formula ad,(ExiQyi) zd (xi)yi Exid (yi), which works because

d' 1is a derivation and Exiyi = 0. From these equations, it is clear that

this map is a bimodule homomorphism, and that 4' = d so the derivation

(VIR
dl
d:R + ker (m) has the correct universal property, and by the uniqueness of

an object representing a functor, we see that our theorem holds.

We can simplify our previous description a little using this
result. From the relations, 6(rlr2) = rlé(rz) + (S(rl)r2 and
G(rl + r2) = G(rl) + G(rz), it is clear that if R 1is generated over Ro
by the set of elements X, then QR (R) is generated by 6(X). We wish
O

to determine the relations imposed, so first we consider the case where the

set X 1is a free generating set.

Theorem 10.2 Let R £ Ro u Z<X>, the ring generated over Ro by the set
Z

X subject to no relations; then QR (R) 1is the free bimodule over R on
O
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the set X.

Proof: Let M be any R,R bimodule; then any derivation from R to M

vanishing on R is determined by the image of the elements X under the

o]
derivation; moreover, the elements of X may be mapped anywhere by a

derivation. So, the functor DerR (R,M) is naturally equivalent to the

functor HomSetS(x,M); one object that represents this functor is the free

bimodule over R on the set 6X, which has a derivation from R to it
extending the map X - 6X; by the uniqueness of an object representing a

functor, QR (R) must be isomorphic to this bimodule and the universal
(0]

derivation from R to this free bimodule is the one mentioned earlier.

Given an arbitrary Ro—ring, R, generated over RO by a set

of elements X, there is a surjection RO i Z<X> -+ R; so we should like

to describe how the universal bimodule of derivations changes under surjec-
tive homomorphisms between Ro—rings. This is quite simple to describe as we
shall see in the next theorem.

First of all, we introduce some notation, which simplifies the
equations of this chapter substantially. In many situations, we shall have
a specific homomorphism of rings R - S and also a particular R,R bi-
module M; we may form the §5,S bimodule SQRMQRS, which we shall in
general write as gMg,; if the rings R and S are constructed from other

rings in a manner which is reflected in the names of R and S, SQRM@RS
will be quite unwieldy. For example, we shall prove later on the following

formula:

2

] ]
(") O(Rl) ) & ( e (R,)) ) .

u
Fo o ?
Since QRO(Rl ﬁé R2) must be an Rl ﬁé R2, Rl éé R2 bimodule, whilst

. . . . e 2
QRO (Ri) is an Ri'Ri bimodule, it is clear that by the symbol QRO(Ri)
we mean (Rl ﬁé R2)9Ri(QRO(Ri))QR (R, UR,).

i IRy 2

Theorem 10.3 Let R be an R_-ring, and I an ideal of R; then we have

2

p
an exact sequence: I/I2 > QR (R)g »> QR (R/I) -~ O, where p 1is induced

(0] (]
e
by the ring homomorphism, and the map from I/I2 to the bimodule QR (R)
O

is induced by §.
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If RO is a semisimple artinian ring, our sequence may be

2
extended to an exact sequence: O > I/I” > QQR (R)Q > 0_ (R/I) » O.

I RO

Proof: We have the exact sequence: O - QR (R} - RQR R > R » 0, vwhich must
(6} (e}
be split exact as a sequence of left R modules; consequently, we have the

exact sequence:
d I I I .
0 > R/ 2. (2 (R) > R/ 2. R~ R/I > O
(0] (0] (o]
We look at part of the long exact sequence of TorR( ,R/I):

R
(e} (6}

all terms are R/I,R/I bimodules.

R
Tor} (R/18, R,R/T) > Tor) (R/I,R/T) > QQR ®® > R/18, R/I > R/I > O, where
(o]

It is well-known (and we shall see this soon) that

~

Tori(R/I,R/I) = I/I2. The map R/IQR R/I » R/1I 1is the multiplication map,
(o]
so its kernel is isomorphic to QR (R/I) by 7.2, which gives us the exact

2 8 2 . s L.
sequence: I/I” > QR (R) -~ QR (R?I) > 0; 1if Ro is semisimple artinian,
(0] (0]
s s R
R/IQR R is projective, so that Torl(R/IQR R,R/I) = 0, and we have the
(o] (o]
exact sequence: O > I/I2 > QQR (R)Q > QR (R/I) » O as stated.

° ° 2 2 o
We need to show that the map from I/I” to QR (R) is the
(o]

one we said; in order to show this, we describe the isomorphism between I/I2

and Tor?(R/I,R/I). Consider the map of exact sequences:

I
.|
o ———‘»R/IQRQ (R) ———>R/IQR R—R/I —0

RO (e}

R R/I o}

Applying TorR( ,R/I) to it gives us a commutative diagram:
R 2
o - Torl(R/I,R/I) d IQRR/I = I/I” > R/I

Tori(R/I,R/I) > QQR (R)Q
(0]

which shows that I/I2 = TorT(R/I,R/I), whilst the right hand column
demonstrates that the map from I/I2 to QQR (R)Q is what we want it to be.
(o]



This result gives us a presentation of QR (R) in terms of

generators and relations whenever we have a presentation of R over RO.
If the set X generates R over RO, subject to the relations {fi} the
universal bimodule of derivations of R over RO is generated as a bi-
module by the elements &X subject to the relations dfi = 0, where dfi
is the formal differential of the element fi of the ring RO ¥ Z<X>.

We need a few results about the behaviour of the universal bi-

module of derivations under various universal constructions; we begin with

the coproduct construction.

Theorem 10.4 Let {Ri:i e I} be a family of Ro—rings; then

Proof: This is most easily seen using our generator and relation construction

of the universal bimodule of derivations described after theorem 7.3. It is

clear that Q_ (JR,) 1s generated as a bimodule by the image of the bi-
(s3]
modules QR (Ri) and there are no further relations, so the theorem must
o]
hold.

We can also calculate the universal bimodule of derivations of
a tensor ring.
. ~ 8 0
Theorem 10.5 Let M be an R,R bimodule; then QR(R<M>) = "M, where the

derivation induces the identity map on M.

Proof: We look at the generator and relation construction of the universal
bimodule of derivations again. QR(R<M>) is generated by §&6(M), and the
only relations are given by &§(xrm) = ré(m), and §{(mr) = §(m)r for r in

R, and m 1in M. So the result follows.

We also wish to study how the universal bimodule of derivations

behaves under the process of adjoining universal inverses.

Theorem 10.6 Let I Dbe a collection of maps between f.g. projectives over

the Ro—ring R; then .Q <RZ) = QQR (R)g.

Ro 0
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Proof: Given a bimodule M over a ring T, we can form the ring whose
additive structure is isomorphic to T & M and whose multiplication is
given by (t,m)(t',m') = (tt', tm' + mt'), the trivial extension of T by
M; we write this ring as (T,M).

: . . 2 -]
We wish to construct a derivation from RZ to QR (R) that
(o]

extends the universal derivation from R to QR (R). So, consider the ring

homomorphisms: °

—_—
R (R,QRO(R))

| e e

(R, @, (R) )
r r RO

we wish to complete this to a commutative diagram of ring homomorphisms by

a map from RZ to (RZ' mQR (R)Q), because such a map must take the form
(¢]

s =>(s,ds) where d 1is a derivation extending the universal derivation

from R to QR (R) by the commutativity. However, the set of maps I are
(¢]

® ®
invertible over (RZ' QR (R) ), since they are invertible modulo the nil~
(0]

potent ideal (O,QQR (R)7); therefore there is a unique map from RZ to
(¢]

(RZ,QQR (R)Q) completing the diagram.
(o]

We wish to show that this must be a universal derivation. Given

a derivation d4':R -+ M where M is an R_,R bimodule such that 4'

DA
vanishes on RO, we know from the universal property of QR (R) that 4'
(¢]
restricted to R factors through QR (R), so we have a diagram:
(¢]

R # QR (R)

1 (o]

R —é——-——b Q (R)Q

where we have shown that the top triangle is commutative and we wish to show
that the bottom triangle must also be commutative to complete the proof. We

have two homomorphisms from RZ to (RZ'M) the first via s - (s,d'(s)),

and the second via s - (s,da(s)). These agree on R, and since R » RZ
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is an epimorphism they must be the same map.

Generators for the free skew field

For a free group on n generators it is well known and easy to
see that any generating set of n elements must be a free generating set,
and the corresponding result for a free k-algebra was shown by Cohn and
independently by Lewin (69). It is natural to ask whether the corresponding
result holds for free skew fields, which arise as the universal localisation
of the free k-algebra; J.Wilson asked whether the free skew field on n
generators could be isomorphic to the free skew field on m generators, and
a negative answer to this question would follow from the first result. We
should also like to know that if D 1is a skew subfield of E, then the skew
subfield of E{X» generated by D and X is isomorphic in the natural way
to D+$X), and if M 1is an E subbimodule of N, then the skew subfield
of E{N» generated by E and M 1is naturally isomorphic to E<{M}.

In the first of our problems we shall show that if n elements

tl,...tn generate k(xl.....xn) as a skew field over k, the homomorphism

¢ on k<yl.....yn> given by ¢(yi) ti induces an isomorphism:

n

® ®
S¢s Qk(k<yl.....yn>) Qk(k<xl°'°'°xn>)'
It follows from our next theorem that ¢ must extend to an isomorphism of
the skew field k(yl....yn) with k(xl.....xn) as we wished to show.
Our next result gives us a way of recognising those epimorphisms
from a right hereditary k-algebra to a skew field that are universal localisa-

tions.

Theorem 10.7 Let E be a skew field, and let R be a right hereditary E-
ring. The ring homomorphism ¢:R - F from R to a skew field F 1is a
universal localisation if and only if ¢ induces an isomorphism

s6:%0 (0 = o_(r).

Proof: If F is a universal localisation of R, the result is clear.
Conversely, if the map &¢ is an isomorphism, QR(F) =0, and so ¢ is

at least an epimorphism. Therefore, by theorem 7.5, if I 1is the collection
of square matrices over R that become invertible over F, they form a
prime matrix ideal, and the induced map R, =+ F 1is surjective, where R

L
is a local ring, and the kernel must be the radical.

T
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Since RE is a universal localisation of a right hereditary
ring, it is right hereditary by 3.2, and the kernel of RE -+ F, I, must
be a free module, so that I #1I except when I = O.

From 7.3, we have the exact sequence:

o -+ I/I2 -+ QQE(RE)Q -+ QE(F) + 0; also we have the commutative diagram

29

2
g R} ——————Q_(F)

b+ 2
QE(RE) '

where the top row and the first slanting arrow are isomorphisms which implies
2
that the second slanting arrow must also be an isomorphism, and I/I” = O
follows from the exact sequence above. Hence, I = 0, and RE ZF.
Next, we show that the skew subfield of E<{X» generated by D
and X where D 1is a skew subfield of E is isomorphic to D<X»; the

proof is simply to apply the last result.

Theorem 10.8 Let D be a skew subfield of E; then the skew subfield of
E<X» generated by D and X is isomorphic to D<X3.

Proof: First, we calculate the universal bimodule of derivations of E<{X}
over E. E<{X» is the universal localisation of the fir E<X», so, by
10.6, O (E<X3) = QQE(E<X>)Q. By the remarks after 10.3, QE(E<X>) is
generated by the elements &X subject to the relations edx = §xe for all
X in X, and e in E; that is, QE(E(X>) is the free bimodule on the
E~centralising generators 6X. Let K be the skew subfield of E<{X3
generated by D and X, and consider the K,K bimodule generated by 6X
in QE(E(X}). This is the image of QD(K) in QE(E(X}) induced by the ring
homomorphism from K to E<{X». This bimodule is just the free bimodule on
the D-centralising generators 6X. However, QD(D<X>) is the free bimodule
on the D~centralising set &X, and so, the natural map from D<X> to K
induces an isomorphism QD(K) = QQD(D<X>)Q,' since D<X> 1is a fir, 10.7
shows that K must be isomorphic in the natural way to D<X».

This result gives us a useful handle on our first problem about

the generators of free skew fields. Since we are looking at bimodules, it is
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likely that we shall have to think a little about the enveloping algebra of

a k-algebra, R, which is defined as ROQkR; our last result shows that
the enveloping algebra of a free skew field embeds in a skew field, and so,
the number of generators of a free bimodule over a free skew field is an
invariant. In fact, we shall consider a more general result than simply

generators for free skew fields, since the method of proof is no harder.

Theorem 10.9 Let E be a skew field with central subfield k. Let

1
over E. Then, if the enveloping algebra of E o k(xl....xn> over k is
k

t ....tn be elements of E i k(xl....xn> that generate it as a skew field

weakly finite, the natural map from E ; k<yl....yn> to E o k(xl....xn>
sending yi to ti extends to an isomorphism of E o k(yl....yn> with

k
E ﬁ k(xl....xn>.

Proof: The universal bimodule of derivations of E % k<x1....xn> over E
is the free k-centralising bimodule on the generators Gxi, so, by 10.6,
the same holds for the universal bimodule of derivations of E ﬁ k(xl....xn>
over E.

Since tl....tn generate E i k(xl....xn} as a skew field over
E, Gti generate nk(E o k(xl....xn}). So they are free generators because
we assumed that the enveloping algebra of E o k(x e edX } was weakly
finite. Hence, the map from E % k<y1...y > to E o k(xl....x ¥ given by
v, ti induces an isomorphism n (E % k<y1....y >) +> n (E o k(x ceeeX })

So, by 10.7, the map sending yi to ti extends to an iso-

morphism from E g k(yl....yn} to E g k(xl....xn>.

No example is known of a tensor product of skew fields that is
not weakly finite, so that it is yet possible that 10.9 may apply for all
skew fields. We shall prove only that the enveloping algebra of
E ﬁ k(xl....xn} is weakly finite when E 1is finite-dimensional over k.

We shall prove this by embedding E g k(xl....xn> in Mm(k(x}) for a
suitable set X and natural number m. It is useful to have a more general

result on embeddings of simple artinian rings.

Lemma 10.10 Let {Ei for i =1 ton} be f£f.d. division algebras over k,

such that l.c.m.{[Ei:k]} = m; then OE, © k<X} embeds in Mm(k(z}) for a

k k
suitable set 2Z.
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i
n copies of Mm(k), which embeds in o Mm(k) for countably many copies

Proof: Ei embeds in Mm(k), so, by 9.11, o E, embeds in o Mm(k) for
k

of Mm(k), which we index by Z. We have an automorphism, o, of this
defined by sending the ith copy of Mm(k) to the (i + l)st, so we form
the skew Laurent polynomial ring (g Mm(k))[x,x—l;o], which is a prime
principal ideal ring, and so, has a simple artinian ring of fractions.
However, we may construct this ring as a universal localisation of
Mm(k) klk[y]. Form the ring Mm(k)ni k y,y—l], which is clearly a universal
localisation of Mm(k) g k[y], and consider the subring generated by the
conjugates of Mm(k) by the powers of y; there can be no relations between
the copies of Mm(k), so this ring is just ﬁMm(k) for countably many
copies of Mm(k). We adjoin the universal inverses of all full maps between
f.g. projectives over ﬁMm(k) inside Mm(k) ® k[y,y_l], and the ring we
find must be our skew Laurent polynomial ring above. The simple artinian
ring of fractions of this ring must be a universal localisation of
Mm(k) B k[y], so it can only be Mm(k) g k(y).

So far, we have embedded ; Ei ; k¢X» in the simple artinian
ring Mm(k) i k(y) ? k¢X», which is just Mm(k) g k¢Xuy». This is a
universal localisation of Mm(k) % k<X'> for X' = Xvuy. However, this is
just Mm(k<Z>) where Z 1is the set {zijx :i,j=1tom, x € X'} where
the isomorphism sends x in X' to the matrix {zijx} whose ijth entry is
zijx' Therefore, Mm(k) i k<¢X'» 1is isomorphic to Mm(k{Z)).

We can prove the theorem we wanted now.

Theorem 10.1l1 Let E be a f.d. division algebra over k; then n elements
of the skew field E o k{xl....xn> that generate it as a skew field over E
k

are free generators.

Proof: By the last lemma, E o k{xl....xn) embeds in Mm(k{Z)) for some
set Z. Consequently, its enveloping algebra over Xk embeds in
Mmz(k<z>°@kk(z)). So we need to show that the enveloping algebra of k<¢Z»

is weakly finite from which our lemma follows. However, we know that the
enveloping algebra of k<2 embeds in a skew field, because it is a simple
ring (the centre of k<2 is k, as we stated in 8.2), and we have a homo-
morphism to a skew field k{Z)O{Z') where 2' 1is a set in bijective
correspondence with 2. So this is a weakly finite ring. Our theorem follows

from 10.9.
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There is another interesting result that we can prove using the
techniques of this section, which gives us an invariant of skew field co-
products of f.d. division algebras over k. We consider the universal bi-
module of derivations of such a skew field. After we have shown that the
enveloping algebra of a skew field coproduct of f.d. division algebras over
k is a weakly finite hereditary ring with a unique rank function, it follows
that the rank of the universal bimodule of derivations, which may be
considered as a f.g. projective module over the enveloping algebra, is an
invariant of the skew field. Since this number may be computed without any

difficulty from any coproduct representation, this is quite useful.

Theorem 10.12 Let {Di: i =1 ton} be a finite collection of f.d. division
algebras over k; then the enveloping algebra of o Di is a weakly finite

k 1
heréditary ring with a unique rank function taking values in E-Z for some

natural number m,

Proof: By 10.10, o Di embeds in Mm(k<z)) for some set 2; by the
k
argument of 10.11l, its enveloping algebra must be weakly finite since it

embeds in the enveloping algebra of Mm(k<z)).

The enveloping algebra of o D1 is a universal localisation of
k
(o D,)° Qk(g D,), which is isomorphic to o (o D.)oﬁkD.).
k & i (0D)° k 1 i
k 1

o : . -
Each ring (i Di) -] Di is simple artinian, because, the centre

of o Di is k or k(t) for zome transcendental t by 8.3; so our
enveloping algebra is a weakly finite universal localisation of a ring with
a unique rank function. It must be a localisation at some set of maps full
with respect to the rank function, and so, it has a unique rank function
itself by the fact that all f.g. projectives are stably induced from the

ring of which it is a universal localisation by 5.10.

Once we have this theorem, we know that the universal bimodule
of derivations of o Di over k 1is a projective bimodule, since it is a

k
sub-bimodule of a free bimodule, because of the exact sequence:

0O+ Q (oDb,) oD, oD, >0D, =0,
k x & x 1k k & k 1t

It is f.g. projective from the fact that Qk(o D

) Ze % p)®
xk 1 k i
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by 10.4 and 10.6. Its rank is an invariant since there is a unique rank

function.

m,-1

Theorem 10.13 The rank of £ (o D,) is £ where m, = [D, :k].
= sl kg i i i

i mjy
~ 2 ]
Proof: We have the formula , (o D.,) =@ Q (D,) .
kk 1 k 1

From the exact sequence O - Qk(Di) - DiQkD1 - D1 + 0, we find

> D i
the exact sequence O > (g Di)QDiQk(Di) (g Di)Qk e g Di + O by tensoring
on the left by (o D,)®

i Dy

split exact sequence of f.g. projective bimodules since (o Di)OQkDi is
k

simple artinian. The middle module is free of rank 1, the right module has

. As a sequence of o Di' Di bimodules, it is a
k

i

rank 1l/m.; so (oD,)®& § (D,) has rank 1 -1/m, asa oD,, D, bi-
i x 1 Dy ki i gk
module. This implies that the rank of the bimodule QQk(Di) must be

1 - l/mi, and summing gives us the result we want.

We shall discuss in a later chapter the question of distinguish-
ing more fully between skew field coproducts with f.d. factors, as well as
providing examples of isomorphisms between certain of them that have the

appearance of being quite different.

As a last result, we are able to show that certain skew sub-

fields of E<{N} have the form they should have by the methods of this
chapter.

Theorem 10.14 Let M < N be an extension of bimodules over the skew field
E; then the skew subfield of E{N}» generated by E and M is isomorphic
in the natural way to E<M}.

Proof: E<M> and E<N> are both firs and their universal skew fields of
fractions are E{M} and E{NP. By 10.5 and 10.6, o_(Edmy) = %o_(zaw»)® = B,
and a similar statement holds for QE(E{N)); moreover, the universal
derivation takes the form of the identity map from M to M in this
representation.

Let K be the skew subfield of E{N} generated by M over E;
we wish to find QE(K), and we have a homomorphism from it to the K,K sub-
bimodule of QE(E(N)) generated by 6M, since M generates K over E.
However, this must be simply QMQ; so the map QQE(E<M>)Q - QE(K) is an
isomorphism, and, by 10.8, K must be E<M}.
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11 COMMUTATIVE SUBFIELDS AND CENTRALISERS IN SKEW FIELD COPRODUCTS

In this chapter, we shall find out what we can about the
commutative subfields of skew field coproducts, and centralisers in the
matrix rings over the free skew field; in the first problem, the transcendence
degree of commutative subfields of the skew field coproduct is shown to be
essentially determined by that of the factor skew fields; in the second
problem we find that skew subfields of Mn(k<x}) that have centres trans-
cendental over k are f.d. over their centre and in fact this dimension
must divide n2. In addition, we shall prove an odd result on skew sub-
fields of the free skew field; we shall see that every 2 generator skew sub-
field of the free skew field is either free on those 2 generators or else it
is commutative; there is an analogous result to this known for the free
algebra.

The basic result we need to prove our theorems is a characterisa-
tion of the transcendence degree of commutative subfields of matrix rings

over a given skew field due to Resco (80) which we shall not prove.

Theorem 1l.1 The maximal transcendence degree of a commutative subfield of
Mn(E) for varying n 1is the first integer m such that the global dimen-
sion of Eekk(xl...xm+l) is m, where {xi} is a set of independent
commuting variables. If there is no such integer, the maximal possible trans-

cendence degree is infinite.

At present, it is unknown whether there can be no commutative
subfield of transcendence degree m inside Mn(E) when no such field lies
in E; however, there is a candidate for a counter-~example. We consider
Mn(F) which is isomorphic to Mn(k) g k(xl...xm). It is unclear whether
k(xl...xm) can be embedded in F.

We shall apply 1ll.1 to the study of commutative subfields of

simple artinian coproducts; the author's original proof of the main theorem
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in this direction was missing a step, which was supplied by Dicks who pointed

out the next theorem.

Theorem 11.2 Let R be a weakly semihereditary k-algebra, and let S be
a simple artinian universal localisation of R; then the global dimension

of SQkA is bounded by the global dimension of RnkA for any k-algebra A.

Proof: If the global dimension of R@kA ig o or O, the result is
trivial. So, we assume that the global dimension of RQkA is n 2 1. Let

M be some S® A module, and let O » P +P +.... P, > M+0 Dbe a

k n+l n 1

resolution of M as an RQkA module, where each Pi is projective.

Tensoring over R with S gives us the sequence

N . .
o] Pn+19 S + P Q S » .;{. - Plﬂ S ~» MQRS + O which we shall show is an

exact sequence. For Tor M,8) =0 for 122, since R is weakly semi-

hereditary, and so, of weak dimension 1; whilst Tbrl(S ,S) = 0 since S is

a universal localisation of R and so, Torl(M,S) = 0, becaugse M isg an

S-module.

n

PiQRQ A(SQkA) which is

M@ S =M as S® A module, and P.@_S
k iR n

R

a projective SokA module. So, M has global dimension at most n, as we

wished to show.

This applies to the study of commutative subfields of simple

artinian coproducts in the following way.

Theorem 11.3 Let S be simple artinian, and let Sl and 52 be simple

artinian S-rings. Let k be a common central subfield. Suppose that the

global dimension of S® E = n, and the global dimension of S8 E is n

k ik
then ni z n, If ni =n for 1= 1,2, then the global dimension of

i,
(Sl o Sz)QkE is n or n+l. If ni >n for i =1or 2, then the global
S

dimension of (Sl i Sz)QkE ig the maximum of n, and n,.

Proof: Let A ¢ B be a palr of rings such that B 1is left free and also
right free over A; then by 9.39 of Rotman (79), we know that the global
dimension of A 1is less than or equal to the global dimension of B
provided that A has finite global dimension. In particular, this applies

to SQkE c S'QkE, where S' 1is any S-ring. It also applies to show that
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the global dimension of (Sl o Sz)QkE is at least the maximum of n, and
k
However, by the last theorem, the global dimension of

. 3 i u
(Sl i Sz)QkE is bounded by the global dimension of (Sl 3 Sz)ﬁkE.

b E = u E); i ; .
(Sl 3 82(9k (SlﬂkE) (82@k )Y : SiQkE is free on either side over the

S® E

k

subring SﬁkE, so, by a theorem of Dicks (77), the global dimension of
(Sl E Sz)QkE is bounded by the maximum of nl and n, if one of these is
larger than n, and if nl =n = n2, then it is bounded by n+l. The
theorem follows.

If we take E to be k(xl...xm) for varying m, and apply
11.1 and 11.3, we deduce:

Theorem 1l1.4 Let n,nl and n2 be the maximal transcendence degree over
k of commutative subfields of Mt(S), Mt(Sl) and Mt(sz) for varying t,
where all rings are k-algebras, and Si is an S-ring. Then, if n, or n,
is larger than n, the maximal transcendence degree of commutative sub-

fields of M (Sl o Sz) over k for varying t is the maximum of n, and
k

et

n,; if n

5 n = n, it may be n or n+l.

1
Proof: By 11l.1, the maximal transcendence degree of commutative subfields
of Mt(sl [} Sz) for varying t is equal to the maximal global dimension of
(S, o0 8,)® k(x._...x ) for varying m. The theorem follows at once from

l1g 2% 1 m

11.3.

Both possibilities may occur for nl =n = n2. First, consider

S = k(xl...xm) and Si =8 i k(yi); then

S, o S, ¥k(y,) o k(y,) ok(x,...x ). By ll.4, the transcendence degree of
1 2 1 k 2 1 m

maximal commutative subfields of Mt(sl o Sz) is at most m in this case.
S

~ 2 _
On the other hand, let S = k(xl...xm), and Si = S(ai) where ai = xl.
Then the centre of Sl o 82 contains S8, and also the element alaz + azal,
S
which is transcendental over S. So, here, the maximal transcendence degree

of commutative subfields is n+l.

We pass from considering the commutative subfields of skew field

coproducts to the study of centralisers. There have been a number of
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interesting results on centralisers in skew fields and rings. The most
interesting of these is due to Bergman (67), who showed that the centraliser
of a non-central element in the free algebra over a field is a polynomial
ring in one variable. Another result of interest is due to Cohn (77') who
showed that the centraliser of a non-central element in the free skew field
is commutative; together with the earlier results of this chapter, we also
know that its transcendence degree over k 1is 1. We shall prove that it
must also be f.g. as a special case of results on centralisers in skew sub-
fields of Mn(k(x)). We shall show that centralisers of elements trans-
cendental over k in such skew fields are f.g. of p.i. degree dividing n
and having transcendence degree 1 over k. We have already seen that a
number of skew fields may be embedded in Mn(k(x>). In particular, we showed
in 7.12 that all skew field coproducts of £.d. division algebras over k may

be so embedded.

Theorem 11.5 Let C be an arbitrary commutative field extension of k;
then CQan(k(X)) is an hereditary noetherian prime ring.
Proof: By 10.8, k<X} is the skew subfield of <X} generated by k and
X. Since k<X} has centre Kk, CQkk(x) is a simple ring and so, must embed
in C4X», which shows that it is a domain. It must be an Ore domain, because
C 1is commutative, and therefore, by representing C as a direct limit of
f.g. fields kak(x) may be represented as a direct limit of noetherian
domains .,

CQkk(X) is a universal localisation of C<X>, and so, it must
be hereditary by 4.9. However, an hereditary Ore domain must be noetherian
by Robson (68). Therefore, CR® Mn(k(x}) = Mn(CQkk(X)) is an hereditary

k
noetherian prime ring as we wished to show.

This gives us another handle on commutative subfields of Mn(k(x>).

Theorem 11.6 Any commutative subfield of Mn(k(x)) is f.g. of transcendence

degree at most 1 over k.

Proof: Let C be a commutative subfield of Mn(k(x>); by 11.5, CQan(k(X>)

is hereditary and noetherian. So, CQkC must be noetherian, since

CEan(k(X>) is faithfully flat over it (see Resco, Small, Wadsworth 79)).

Therefore, C must be f£.g. That the transcendence degree is at most 1 follows
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from 11.4.

This already shows that centralisers in k¢X}» of non-central
elements are f.g. and so, f.d. over the field generated by the element they

centralise. We extend this a little.

Theorem 11.7 Let E be a skew subfield of Mn(k(x)) whose centre contains

an element y transcendental over k; then [E:k(y)] is finite.

Proof: Let M be a maximal commutative subfield of E. M 2 k(y), and so,
is f.g. of transcendence degree 1 over k. Therefore, M is a f.d.
algebraic extension of k(y).

If C is the centre of E, [M:C] < [M:k(y)] and is finite;
therefore, if M' is the centraliser of M in E, [E:M'] = [M:c] is
finite. But M' = M, and so, [E:k(y)] = [E:M][M:k(y)] is finite too.

So, skew subfields of Mn(k(x>) whose centres are transcendental
over k are f.d. over their centre. It turns out that we can get a good bound
on the p.i. degree of such skew fields. The result we prove yields Cohn's

theorem that centralisers in the free skew field are commutative.

Theorem 11.8 Let E be a skew subfield of Mn(k(x>) of finite p.i. degree.

Then the p.i. degree divides n.

Proof: Let k be the algebraic closure of k; E embeds in Mn(k(XH, and
M (k<x}).
n

If E has finite p.i. degree, E 1is f.d. over its centre, which

~

so, E® k embeds in M (k¢X}® k
k n k

is f.g. over k by 12.6, and so, EQkE must be artinian.
1f Eﬁkﬁ/rad(EQkE) = xSi, where each Si is simple artinian,
i
each Si is a central extension of E, and so, has the same p.i. degree.
Further, the transcendence degree of the centre of each Si is at most 1,
so, by Tsen's theorem, Si is isomorphic to Mm(ci) where m is the p.i.

degree of E, and ci is the centre of Si' Therefore,

~

Eﬁkﬁ/rad(EQkE) Mm(¥ci), and since matrix units lift modulo a nilpotent
ideal, E@kﬁ = Mm(A) for some artinian ring A. Therefore, we have a unit-
preserving embedding of Mm(ﬁ) in Mn(E{X>), where m is the p.i. degree

of E, which shows that m divides n.

We summarise the last few results in the following form.
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Theorem 11.9 Let E be a skew subfield of Mn(k(x}) whose centre is
transcendental over k; then E 1is f.d. over its centre which is f.g. of

transcendence degree 1 over Xk, and the p.i. degree of E divides n.

We come to the last theorem of this chapter which is on 2
generator skew subfields of the free skew field. At present, it is quite
unclear whether all skew subfields of the free skew field must themselves
be isomorphic to free skew fields on some number of generators; we have
already seen that commutative subfields must be f.g. of transcendence degree
1 but the methods are clearly too weak to show that they actually must be
rational. It therefore comes as a surprise that we are able to prove any-

thing at all about 2 generator skew subfields.

Theorem 11.10 Let F be a 2 generator skew subfield of k<{X}» over k;

then either F is commutative or else it is free on the 2 generators.

Proof: Foﬂkk(x) is a weakly finite hereditary ring such that all

projectives are stably free of unique rank, because it is a universal
R o R R (e}

localisation of F <X> which embeds in F <X).

We have an exact sequence of F, k<{X} bimodules:
]
o - Qk (F)" - Fﬁkk(X} > k€X} »~ O

vwhere the left action of F on k<{X} 1is given by the embedding of F in
k€¢X». Since F 1is generated by elements s and t, Qk(F) is generated
by elements §6s, 8t. By theorem 10.7, either F 1is freely generated as a
skew field by s and t or else there is a non-trivial relation between
§s and &t; 1in the latter case, Qk(F)Q is a non-zero 2 generator pro-
jective bimodule with some non~-trivial relation between the 2 generators;
so it has rank 1 considered as a projective Foﬂkk(x) module, and k<¢X}
considered as an Foﬁkk(x) module via the left action of F on k<£X}
described above is a simple module that is torsion with respect to the rank
function.

We have another torsion Foﬁkk(x> module, Fﬁk(s)k<x} and this
maps onto our simple module via the multiplication map.

The category of torsion modules is an abelian finite length
category by 1.22; therefore, as a torsion module, Fﬂk(s)k(x) has a unique

largest semi-simple quotient torsion module and the endomorphism ring of
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Fﬁk(s)k(x> must act on this semisimple module. This semisimple torsion

module maps non-trivially onto our simple module Fk(x} it has a

x¢xy’

unique largest direct summand of the form (Fk(x>k(x>)n' and the endo-

morphism ring of F® k<X» must also act on this module. So, we have a

k(s)

map from k(s) which lies in the endomorphism ring of Fﬁk(s)k(x} to the
n
)

endomorphism ring of (Fk(x> which is Mn(C) where C 1is the

[ 39.¢2
centraliser of F in k<X»; consequently, [C:k] = ®» because s must be
transcendental over Xk, and since centralisers of elements of k<X} that
are not in k are commutative, F, which centralises C, must be

cammutative,
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12 CHARACTERISING UNIVERSAL LOCALISATIONS AT A RANK FUNCTION

Simple artinian universal localisations

In chapter 10, we saw that if R 1is a right hereditary k-
algebra, we can characterise those epic skew fields over R that are
universal localisations by the property that the associated map on the
universal bimodule of derivations QQK(R)Q - QK(F) is an isomorphism. As
we shall see, this is equivalent to the property that Tor?(F,F) = 0, which
is a condition that we have already discussed in chapter 4; this is precisely
the property that we need to generalise to a characterisation of epic simple
artinian rings that are universal localisations. This condition fits nicely
into the theory of f.d. hereditary algebras and allows us to characterise
those epimorphisms from f.d. hereditary algebras to f.d. simple algebras
that arise as universal localisations.

In order to prove these results, we have to discover a lot of
information about the module structure of epic simple artinian rings that
are universal localisations at a rank function on a hereditary ring, R; we
are able to turn this information into results about epic R-subrings of
such simple artinian rings; they must all be universal localisations of R,
Such a result was already known in the Noetherian case where, however, it
was stated in terms of Silver localisation. One consequence of this result
on intermediate rings is that an epic endomorphism of the free algebra on
n dgenerators over a field k must be an isomorphism.

It may well be true that if R 1is a right hereditary ring, and
the map R + R' is an epimorphism of rings such that Tori(R',R')= O then
R' is forced to be a universal localisation of R. The author has no way
of attacking this question, however, and the only results are those in this
chapter apart from the result that if I = 12 for an ideal I in a right
hereditary ring, R, then I is a trace ideal which shows that R/I is
a universal localisation of R as we saw in chapter 4. Such a result cannot

be true for all semihereditary rings as one sees by looking at a local Bezout
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domain, L, whose maximal ideal, M, is idempotent; Tor?(L/M,L/M) = 0,

2
since M = M.

Lemma 12.1 Let ¢:R + S be an epimorphism between K-rings, where K 1is a
semisimple artinian ring; then QK(S) ~ aQK(R)Q, if and only if
Tor?(S,S) = O.

Proof: By 7.1, O =+ QK(R) - RQKR + R + O 1is an exact sequence split as a
sequence of left R-modules, so the sequence O - SQRQK(R) - SQKR +8S >0
is also exact, and since K is semisimple artinian, SQKR is a projective
R-module. Therefore, we have an exact sequence:
0 » Tor}(s,8) » %o (R)® » s@s » 5 > 0.

We extract the exact sequence:

R ]
o - Torl(S,S) - 9QK(R) - QK(S) + O, from which our lemma follows.
Before setting about the main proofs, we isolate a useful lemma.

Lemma 12.2 Let R be a ring of weak dimension 1 (in particular, a right
hereditary ring), let M and N be a right and left module over R,
respectively, with submodules M' and N'; then if Tor?(M,N) = 0,
Tor?(M',N') = 0.

Proof: Apply the long exact sequence of Torf( ,N) to the sequence

O+ M' > M- M/M' » O, which shows that Tor?(M',N) = 0, and then apply
the long exact sequence of Tori(M', ) to the sequence O + N' + N + N/N' + O
to complete the proof.

We can begin on the first result.

Theorem 12.3 Let R be a right hereditary ring and let ¢:R » S be an
epimorphism from R to a simple artinian ring S; then S is a universal

localisation of R if and only if Tor?(S,S) = 0,

Proof: Universal localisations of a ring R at some set of maps I between
f.g. projectives always satisfy the condition Tor?(Rz,Rz) = O by Bergman
and Dicks (78) and 4.7. The strategy for proving the converse is to find

the structure of S as a right and left R module.

First of all, we can divide out by the trace ideal, T,, of all
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f.g. projectives of rank O with respect to p, the rank function induced

on R by the map to S; this is a universal localisation of R at suitable
maps all of which become invertible over S. By 4.9, a universal localisation
of a right hereditary ring is right hereditary, so R/T is right hereditary;
by 1.7 and 1.8, all f.g. projectives over R/T are induced from R, and

the rank function p on R induces a faithful rank function on R/T. Since
T lies in the kernel of R + S and Tor?(s,s) = 0, Tori/T(S,S) = 0 too.
Therefore, if we may prove our theorem on the assumption that p 1is a
faithful rank function, it follows in general.

Let M be a right R submodule of S; then, we see from 12.2
that TorT(M,S) =0. Let 0+p % Q-+ M-> 0 be a presentation of M, where
Q 1is f.g. projective, and P must be projective, and therefore, a direct
sum of f.g. projectives by 1l.2. Then, since Tor?(M,s) = 0, the sequence
below is exact:

oS
+>0 .
0> PRS > ORS > MBS

Since p 1is a faithful rank function, and M&RS # 0, P must be finitely
generated, and p(P) < p(Q). Also, o must be a left full map, for, if it
were not, aﬁRS factors through a module of smaller rank, and cannot be
injective.

We define the presentation rank of a f.p. module by
p.p(M) = p(Q) - p(P), where O-+> P> Q+>M-+> 0 is a presentation of M;
it is well-defined by Schanuel's lemma. Our aim is to show that S as a
right module is a directed union of f.p. modules of left full presentation
of presentation rank 1, having no submodules of presentation rank O. There

is an analogous result on the left.

In order to carry this out, we need to see how left full maps
with respect to p behave under QRS. We wish to show that they become
injective; this is a little harder to show immediately than that right full
maps become surjective, which is our next step.

Let a:P + Q be a right full map between f.g. right projectives
over R; then all f.g. submodules of Q containing the image of P have
rank at least that of Q, and so, by our first step, cannot occur as the
kernel of a map from Q to S. Since our first step showed that all such
kernels are finitely generated, we deduce that Hom(cokera,S) = O; since

all modules over S are projective, this shows that cokeraQRS = 0, and
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a@RS must be surjective.

Since all right full maps between f.g. right projectives become
split surjective over S, all left full maps between left f.g. projectives
become split injective over S by duality. If we had assumed two-sided
hereditary, we would know that left full maps between f.g. right projectives
become split injective, and we would proceed as we do in the latter half of
the proof; as it is, we are able to deduce these properties in the right
hereditary case with a little more work.

So, let M be a f.g. left R submodule of S, then by 12.2,
Tor?(S,M) =0, Let O+F ~>Q >M >0 be a presentation of M, where Q
is f.g. projective, and, since R 1is left semihereditary by 1.8, all f.g.
submodules of F are projective. Our intention is to show that F is a
directed union of f.g. projectives where all inclusions in the system are
left full, and the rank of each module in the system is less than that of
0.

Let {Pli:i € 11} be the set of f.g. submodules of F of mini-
mal possible rank q,i if there are f.g. submodules of F that do not lie

in such a P we consider the set of f.g. submodules {PZi:i € 12} where

i’
P2i # Plj fir any 1i,j and the rank of each P2i is q2, the minimal
possible. In general, at the nth stage, either all f.g. submodules are
inside some Pki for k < n, or else, we form the set of f.g. submodules
{p, +ier} suchthat P . ¢ Ppy for k <n, and the rank of P, is
@ the minimal possible. We see that in the limit, every f.g. submodule of
F must lie in some Pni' since the ranks a form an ascending sequence
of numbers in éﬁm, and so, are eventually bigger than the rank of any f.g.
module. So F 1is the directed union of these modules; moreover, if

Pkl < Pij’ the inclusion is a left full map, since there are no intermediate
modules of smaller rank.

Consequently, SQRF is the directed union of the system of f.g.
modules {SQRPki:k ceM, i€ Ik} and all the maps in this system are
injective, because we have shown that left full maps between f.g. left
projectives become injective. As noted above, Tor?(S,M) = 0, so the

sequence below is exact:
0o > > S8 > SR M->0.
SQRF RQ R

Therefore, SERF must be finitely generated and of rank less than that of

Q, since SERM does not equal O. Consequently, the rank of each Pki must
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be less than the rank of Q, since SQRPki embeds in SQRF, our directed
system must have stopped at some finite stage, and it represents F as a
directed system of f.g. submodules where all maps are left full, and the
modules all have rank less than that of Q, as we wished.

Let o:P > Q be a right full map between left f.g. projectives;
then all f.g. submodules containing the image of o have rank at least that
of Q, so that the image of o cannot lie in the kernel of a map from ¢Q
to S. Therefore, HomR(cokera,S) = 0, and SﬁRcokera = 0. Right full
maps between left f.g. projectives become split surjective, and so, by
duality, left full maps between left f.g. projectives become split injective,
as we wished to show originally.

Let M c N be a pair of f.p. right modules of left full
presentation such that the presentation rank of any module Ml between M
and N is at least p.p(M); then we show next that MQRS > NQRS is an

embedding. For consider the commutative diagram with exact rows:

O->P Ql +M~>0
.| nl
0->P->Q2->N->O,

obtained by pullback from a presentation of N, where o,8 are left full
maps. Then, any @ such that Ql cQc Q2 satisfies p(Q) 2 p(Ql) since
the presentation rank of the image of Q in N is at least that of M by
assumption. So, Ql - Q2 is left full. Tensoring our diagram with S gives

us a commutative diagram with exact rows: O - PR_S > QlQRS > M@ S > O

I A

0o ~» PQRS -+ QZQRS -+ NQRS -+ 0,
since o and 8 are left full, It follows that the map MQRS > NQRS must
be an embedding. We use this to examine the structure of S as right R
module in a similar way to our method of studying a left submodule of a free
left module earlier on.

First of all, we note that every right R submodule of S
containing R has presentation rank at least 1; for on tensoring R ¢c M c S
with S, we obtain § = R&RS > MQRS > SQRS = S, where the composite map is
the identity, so that the rank of MQRS is at least 1l; but we have seen that
Tor?(M,S) = 0, so that p.p(M) = oS(MQRS) > 1,

We consider the set of all f.g. right R submodules M., of S

1i

such that Mli contains R, and p.p(Mli) is minimal, which implies that
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it is 1. Our intention is to show that S is the directed union of these
modules. If it is not, let {Mzi:i € 12} be the sets of f.g. submodules of

S that contain R, do not lie in any M and have minimal presentation

rank, dy, subject to these conditions. i; general, our nth step is to take
the set of f.g. submodules of S that contain R, do not lie in Mki for
k < n, and have minimal rank subject to these conditions. Every f.g. sub-
module of S must lie in some Mki since we have seen that all f.g. sub-
modules have a presentation rank; consequently, S is the directed union

of the directed system of submodules {Mki}' If M _ . cM there can be

’
no f.g. submodule of Mli such that its presentatizi raniiis less than

that of Mkj; so, we have shown above that the map obtained by tensoring
with 8§, MkaRS > MliQRS must be an embedding. This shows that S which

as S module is isomorphic to SQRS is the directed union of the sub-
modules MkiQRS; in particular, each of the ranks ps(MkiQRS) = 1. Since
this is just the presentation rank of Mki (Torl(Mki,S) = 0), our process
must have stopped at the first step; that is, S 1s the directed union of
the f.g. right R submodules {Mli}'

From here, it is not too hard to see that § must he a universal
localisation of R. We know that all full maps between f.g. right projectives
become invertible, since they are both left and right full. So we have a map
from the universal localisation of R at the rank function, Rp, to S,
which we shall show is surjective.

Let s € 8§, and let M be a right R submodule of presenta-
tion rank 1 of S containing both R and s; we consider the commutative

diagram with exact rows:

O+>P>P®R~>R->O0

[

O+P > Q > M->0 ,

obtained by pullback along R ¢ M from a presentation of M. We know that
P® R and Q have the same rank, and since all f.g. modules between R
and M have presentation rank at least 1, the middle column is a full map.
So, over RD it is invertible, and its inverse induces a map from M to
R; whose composite with the homomorphism from Rp to S induces the
embedding of M in S we began with. So the map from Rp to S 1is sur-
jective.

We know that RD is a perfect ring by 5.3, so the surjective
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maps from Rp to simple artinian rings arise as Rp -+ Rp/N - ERO/N, where
N is the nil radical, and e is a central idempotent in the semisimple
artinian ring Rp/N. If e is an idempotent of Rp whose image in RD/N
is e, it is clear that eR /N € eR e is the universal localisation of
R at the map e, so § ig a univgrsal localisation as we wished to show,
because all f.g. projectives over Rp are stably induced from R by 5.3,
and so, the iterated universal localisation theorem, 4.6, applies.

Of course, after the event, we know that § is the universal
localisation of R at the rank function, so that Rp is a rather better

ring than we knew during the proof.

It is possible to give a description of the right R module
structure of S in the situation of theorem 12.3 essentially by abstracting
the relevant information from the proof. First, we assume the rank function
is faithful by passing to the quotient by the trace ideal of the f.g. pro-
jectives of rank O if necessary. Next, we see that S is the directed
union of the f.g. submodule of § that contain R and have presentation
rank 1. If M is such a submodule, all modules between R and M have
presentation rank at least 1. Conversely, if o:R + M is an embedding of
R in a f.g. module of left full presentation having presentation rank 1,
and all f.g. modules between R and M have presentation rank at least 1,
we form the commutative diagram with exact rows obtained by pullback from a

presentation of M: O+P+PO®R->R=>0

| o

O+P + Q = M=+>0.
It is clear that the embedding of P ® R in Q 1is full, and so, it is
invertible over S, which leads to a homomorphism from M to S extending
the map from R to S. The kernel of this map is the unique maximal sub-
module of M of presentation rank O. §So we wish to see how all the maps
o:R+M from R to f.g. submodules of presentation rank 1, such that all
submodules have presentation rank not O, and those that contain R have
presentation rank at least 1, having left full presentations, fit together

to form S. If we have two such maps ai:R - M the pushout map gives us

il
amap o:R -+ M to a module of the right form apart from the problem that

it may have a submodule of presentation rank O, so we pass from M to the
quotient by the unique maximal such submodule of M, M; this gives us a

commutative diagram: R » M1
->
M2 M
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so that we may form the directed system of all such maps. The direct limit

is S.
We may combine the last theorem with 12.1.

Theorem 12.4 Let R be a right hereditary K-ring, where K is semisimple
artinian; let R+ S be a map from R to a simple artinian ring S; then
S 1is the universal localisation of R at the rank function induced by the

map if and only if QK(S) = QQK(R)Q.
Proof: We simply combine the equivalences given by 12.1 and 12.3.

In chapter 1, we defined the transpose of a f.g. module of homo-
logical dimension 1 such that the dual of the module is trivial by
TrM = Ext;(M,R). This defines a duality between the categories of such
modules on the left and on the right as we showed in 1.19. A pre-projective
module, M, is an indecomposable module such that (DTr)nM is projective

for some non-negative integer n; a pre-injective module, M, is an

indecomposable module such that (TrD)nM is injective for some n. It is
clear that these are dual notions with respect to the duality D. Ringel
also defines a module M over a f.d. hereditary algebra to be a brick if
EndR(M) is a f.d. division algebra and Ext;(M,M) = 0; pre-projective and

pre-injective modules are examples of bricks.

Theorem 12.5 Let R be a f.d. hereditary k-algebra and let M be a f.g.
indecomposable module over R with endomorphism ring D a f.d. division
algebra such that [M:D] = m; then the associated map from R to Mm(D)
is a universal localisation at the rank function it induces on R if and
only if M 1is a brick; in particular, for all pre-projectives or pre-
injectives, the associated homomorphism from R to a f.4. simple artinian

ring is always an epimorphism.

Proof: All Mm(K) modules considered as R modules are direct sums of

. 1 1
copies of M; for M, ExtR(M,M) =0 = EXtM (k)(M’M) and so,
m
1 1
EXtMn(k) = ExtR for all Mm(k) modules; by theorem 4.8,

Tor?(Mm(k),Mm(k)) = 0, and so by theorem 8.3, Mm(k) is a universal
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localisation of R.

We shall use the last result in the next chapter to construct
some interesting isomorphisms between simple artinian coproducts, but, for
the present, we shall investigate the subring structure of simple artinian

universal localisations of right hereditary rings more closely.

Epic subrings of simple artinian universal localisations of hereditary rings

In this section, we shall show that all epic subrings must
themselves be universal localisations. The principal application of this
result is to show that all epic endomorphisms of the free k-algebra on n
generators must be isomorphisms; this was shown for n = 2 by Dicks and

Lewin (82).

Theorem 12.6 Let R be a right hereditary ring with a rank function op
such that Rp is a simple artinian ring; let T be an epic R subring of
Rp; then T 1is the universal localisation of R at those maps between f.g.

projectives over R that become invertible over T.

Proof: The method of proof is entirely similar to that of 12.3 except for
the need in one or two places for closer attention. We may assume as we do
in 12.3, that p 1is a faithful rank function.

We have already seen in the course of 12.3 that all f.g. sub-
modules of Rp are f.p. of left full presentation and if M is such a
module, Tor?(M,Rp) = 0. Further, Rp is the directed union of f.g. R
submodules of presentation rank 1l; we shall show that T 1is also a directed
union of f.g. R submodules of presentation rank 1, from which it will
follow in a similar way to the proof of 12.3, that T 1is a universal
localisation of R.

Let R<c McT, where M has presentation rank 1l; then, we

find that the inclusion M ¢ R, becomes an isomorphism MQRRp +R®R =R,

P PRYP
under tensoring with Rp over R; for MQRRp is isomorphic to Rp since

R
M has presentation rank 1, and Torl(M,Rp) = 0, and the image of M@RRp
. . . R
in Rp is MRp = Rp, since R ¢ M. Consequently, Torl(Rp/M,Rp) =0, as
we see by considering the long exact seguence of Torl( ,Rp) associated to
the short exact sequence: O + M - Rp-»Rp/M -+ 0; we find the exact
PR

sequence, O = Tor\(R ,R ) - Tor (R /M,R ) M@ R > R @R , which
1 DR P 1p P R p
demonstrates that Torl(Rp/M,Rp) = 0. By lemma 12.2, we see that
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Tor?(T/M,T) = 0, which allows us to show that MQRT -> TQRT + T is an iso-
morphism; certainly, MQRT > TQRT -+ T is an injective map because
Tor?(T/M,T) =0, and T 1is an epic R ring; the image is just MT which
contains RT = T, since R ¢ M,

We consider the set of f.g. R submodules of T {Mli s i€ Il}
such that R ¢ M

and the presentation rank of each M is 1; we wish

1i
to show that T is the directed union of these modules.

li

If it is not, let {M2i : 1€ IZ} be those f.g. R submodules

of T that contain R, do not lie in any M and have minimal presenta-

i’
tion rank, q2, subject to these conditions;lwe saw in the course of the
proof of 12.3, that a, is larger than 1. In general, at the nth stage,

we consider the set of f.g. R submodules of T {Mni s 1€ In} that
contain R, do not lie in any Mki for k < n, and have minimal presenta-
tion rank qn, subject to these conditions. It is clear that T is the

directed union of the complete set of Mki over all k. We know that if

Mklj c Mk Iy then kl < k2 and any module between the two of them has

2
rank at least equal to qk ; consequently, as we saw in the course of the
1
proof of 12.3, MkljﬁRRp -> MkziﬁRRp must be an embedding of a module of
rank qkl in one of rank qkz. Therefore, TQRRp TQRTﬁTRp = TﬁTRp = Rp

(since T is an epic R ring) must be the directed union of the system of
modules MkigRRp' and so, each such Rp module has rank at most 1, which
implies as we wanted, that T must be the directed union of the submodules
Mli that contain R and have presentation rank 1.

By the same method as we employed in the proof of 12.3, we
deduce that if I 1is the collection of maps between f.g. projectives over
R that become invertible over T, the map from RZ is surjective. All
these maps in ¥ must be full with respect to p, since they are invertible
over Rp, so we may apply the result proved in 5.8, that the image of an
intermediate localisation in the complete localisation at all full maps is
still a universal localisation; in particular, T 1is a universal localisa-

tion.

Together with the theorems at the end of chapter 5, we see that
the epic R-subrings of the simple artinian universal localisation of a
hereditary ring R are precisely the universal localisations of R at a

factor closed set of full maps between f.g. projectives.
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It is not a great deal of effort to prove from this theorem that
all epic endomorphisms of the free algebra on n generators must be iso-

morphisms.

Theorem 12.7 Let ¢:k<xl....xn> > k<xl....xn> be an epic endomorphism,

then it is an isomorphism.

Proof: The elements ¢(xi) generate the free skew field k(xl....xn);
consequently, by 10.11, they must be free generators; therefore
k<x1....x; is an epic k<¢(x1)...¢(xn)> subring of its universal skew
field of fractions, and, by 12.6, it must be a universal localisation of
k<¢(x1)...¢(xn)> at some set of maps. In order to show that it can only be
the trivial localisation, we consider the induced map on the functor K

Kl(¢).

ll

* .

Since Kl(k<xl....xn>) =k , by Gersten (74), Kl(¢) must be '
*

the identity map on Xk ; on the other hand, we have an exact sequence of

K-groups associated to the universal localisation by 4.11:
Kl(R) > Kl(RE) > KO(T) > KO(R) > KO(RE) ’

where R and RE are isomorphic to k<xl....xn> and T is the full sub-
category of modules of the form cokera where o is in I; KO(R) -> KO(RQ)
is injective, and Kl(¢) is an isomorphism so that KO(Z) must be zero;
but this implies that I must be trivial as required because it implies

that k<xl....xn> is equal to k<¢(xl)....¢(xn)>. So ¢ is an isomorphism.
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13 BIMODULE AMALGAM RINGS AND ARTIN'S PROBLEM

One of the purposes of this chapter is to construct a new class
of skew fields generalising the skew field coproduct with amalgamation. They
are interesting to us for several reasons. Many arise naturally as skew sub-
fields of skew field coproducts; also, the methods that apply naturally to
them apply just as well to the skew field coproduct giving us results that
would not have been clear without this greater generality; further, we may
use the new construction in order to show a number of interesting isomorphisms
between apparently different skew field coproducts, and to study the simple
artinian coproducts of the form Mm(k) o Mn(k). However, the major interest
in the construction is the solution it leads to for Artin's problem. Artin
asked whether there are skew field extensions, E > F, such that the left
and right dimension of E over F, respectively [E:F] [E:F]r < ® but
[E:F]l z [E:F]r. We shall see that for arbitrary pairs of integers greater
than 1 occur as the left and right dimension of a skew field extension. In
recent work of Dowbor, Ringel and Simson (79), it was shown that the heredi-
tary artinian rings that have only finitely many indecomposable modules
correspond to Coxeter diagrams in the same way that hereditary artinian
algebras (f.d. over a central subfield) correspond to Dynkin diagrams; they
were unable to show however that any Coxeter diagram that is not a Dynkin
diagram actually had a corresponding hereditary artinian ring, since the
existence of such a hereditary artinian ring required the existence of an
extension of skew fields having different but finite left and right dimension
together with further conditions; at the end of the chapter, there is an
example of an hereditary artinian ring of finite representation type

corresponding to the Coxeter diagram 12(5).

Bimodule amalgam rings

Given a couple of skew fields E1 and EZ’

cyclic El' E2 bimodule to be a pair (M,x) where M 1is a El' E2

we define a pointed

bimodule,
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x is in M, and M= Ele2.

the pair (ElQFE

For example, if F is a common skew subfield

of El and E2,

an F-centralising generator.

2,l@l) is a pointed cyclic bimodule on

The importance of this idea for us lies in the observation that

the ring coproduct E. Y E_, 1is the universal ring containing a copy of E

1F 2 1

and E2 such that the pointed cyclic bimodule (El.E2,l) is a quotient of
(ElQFE2,lQl).
If (M,x) is a pointed cyclic El’ E2 bimodule and the rela-
] = . ]

tions for the generator x are ):.]‘.eijxeij O; eij € El’ eij € E2, then
the universal ring containing a copy of El and E2 such that (E1E2,l)
is a quotient of (M,x) is clearly the ring

u E, = < : o= i = O>
Bl n,x) B2 7 BBy ?eijeij O If eyy x5 70

The first question to arise is whether this ring is not the
trivial ring. We shall show that inside this ring (E1E2,l) is isomorphic
to (M,x) and so, it can only be trivial if M is., Further, we shall show

that E E is a fir. Therefore, it has a universal skew field of

u
1 (M,x) 2

fractions, which we shall denote by E E

o .
1 (M,x) 2
It is fairly clear that the isomorphism class of the ring

El (MLQ) E2 depends in general on the generator x that we choose;
’
surprisingly, this is not true for the universal skew field of fractions;
El (dox) E2 is actually independent up to isomorphism of the generator x,
’

so that it makes sense to talk of the skew field El o E2 where M is a
M

cyclic bimodule, though in this notation there are no specific embeddings

of El and E2 in El o E2, whilst there are specified embeddings of El
M

and E into E

2 E

1 (M?x) o This result allows us to prove a number of
interesting isomorphism theorems.

The method that we develop applies just as well to simple artinian
rings sl and S2 in place of El and E2, so our policy will be to work
in this generality whilst pointing out what occurs in the skew field case.

Let Sl and S be a couple of simple artinian rings, and let

2
(M,x) be a pointed cyclic Sl' S2 bimodule. A good way to study such a
situation is to consider the upper triangular matrix ring R = Sl M
o S

2
This ring is a particularly pleasant sort of hereditary ring, so, if we can

pull the ring S S out of it in some way, we shall be able to show

u
1 (M,x) "2
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that it too has good properties.

Theorem 13.1 Let M be a pointed Sl, 52 cyclic bimodule, where Si are

both simple artinian rings; let R = Sl M \and let a: Sl o\ ~» /0 M

9] 52 o 0] 9] 52

be right multiplication by 0] x\. Then the universal localisation of R

(o] o
is i i L . £ ''= M
at o is isomorphic to M2(Sl (M, %) 52) I R Sl ® N where N
(¢] 52
is some S S bimodule, then the universal localisation of R' at a

1’ "2

is M2(T), where T 1is the tensor ring over S on the bimodule

sl (ﬁfx) 2
(

S,). Both of these ring constructions are

)8 NBg (S; iy So

S
1 (M%) LS,

hereditary.

, 10 OO0
Proof: 1In the ring Ra' the elements (O O) and (O l) and those
representing o and its inverse form a set of 2 by 2 matrix units; there-
~ = - 10 10 -
R = M,(R i .
fore o 2( ), where R is o0 Ra 0o R 1is generated by Sl and

asza , and the only relations arise because (SlaS a_l,l) as pointed S

2
asza bimodule arises as a quotient of (Slxsz,x) (once we identify 52

ll

and asza_l suitably); therefore R 1is isomorphic to S

course, we do not know that R is not the trivial ring.
S ~ = = 1 1
If R' = 1 MQN), then R& = M2(R') where R' = ( O) R'( O);

]
1 (M,x) 52. of

(o] 52 o0 al\0 O
-1

1’ asza , and Na ', where the only relations that

occur state that Sl and asza generate a copy of Sl (fo) 52

Na-l is iscmorphic as left Sl, right asza-l bimodule to N as S

R' is generated by S
and that

1 52

bimodule (again we identify 52 and Sza—l). This is clearly just the

U ,
1 (M%) 52 on the bimodule
s,)).

]
S1 (Mrx) S2)”slmsz(sl Mx) 52

3 L
Since M2(Sl M, %)

hereditary ring R, it must itself be hereditary by 4.9. So Sl (ﬁJx) 52
’

tensor ring over S

52) arises as a universal localisation of the
is hereditary, and similarly, our tensor ring is hereditary.

When considering an upper triangular matrix ring of the form
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S M

1 are simple artinian rings, we shall call the
o s 2 o M

> where S and S
1 s, 0
projective rank function defined by setting p(ol O> =% = p(o s ) the
2

standard u.t. rank function; we have singled this rank function out solely

because we shall use it most often, not because it has any special signifi-

cance. If the map o given by right multiplication by (g g) from (gl g)

M

to (g S ) is a full map with respect to this rank function, then Ra will
2

inherit many of the good properties of R as we shall now show. In most

applications, it will be clear that this map is full; for example, this is

true if Sl or 82 is a skew field.

Theorem 13.2 Let (M,x) be a pointed cyclic Sl, s bimodule, and let

S, MéN 2
N be some other Sl, 52 bimodule. Let R = (Ol 3 >, and let p be the
2

standard u.t. rank function. Then, if right multiplication by (g g) defines

a full map from (gl g) to (g 2®N>, the tensor ring, T, on the bimodule
2

( S )Qs N®_ (S SZ) over the ring S

S (W)
1 (MIX) 2 1 Sz

tary ring with a unique projective rank function whose image is generated by

S is an heredi-

- 8]
1 (M,x) 1 (M,x) "2

the images of the projective rank functions on the subrings Sl and SZ'

In particular, this applies when N is O; we find that the ring

u :
Sl ™, %) 82 has these properties.

Proof: We know that MZ(T) is the universal localisation of R at the map

given by right multiplication by (g g) from <§l g) to (g 2®N>, which
2

we are assuming is full. KO(R) =% &%, and there is a non-trivial kernel
in the map from KO(R) to KO(MZ(T))' so that there is at most one partial
rank function defined on the image of KO(R) in KO(MZ(T)) so that any
projective rank function on MZ(T) must agree with p on KO(R); by the
remarks after 5.2, the rank function must be unique, if it exists and there
is an extension since o 1is a full map.

In the case described by the conditions of 13.2, we deduce that

the universal localisation of the ring S 82 must be simple artinian

(]
1 (M,x)

by 5.5. We denote this by S the universal simple artinian amalgam

1 %) 527
of Sl and 82 along the pointed cyclic bimodule (M,x). Also, we see that
S. M
(slsZ'l) is isomorphic to (M,x) as pointed bimodule; for (Ol s ) embeds
2
in the universal localisation at the rank function, so it certainly embeds



200

-1 ~ ~
in Sl M , but we have an isomorphism (S.aS.a ~,1) ¥ (S.xS,,x) = (M,x),
[¢] 52 o 1”72 1772

which is what we wanted. We can improve our result in the case where Sl

and 32 are skew fields.

Theorem 13.3 Let El and E2 be skew fields, and let (M,x) be a pointed

cyclic El' E2 bimodule; then E is a fir. The pointed cyclic

1 (M?x) E2
bimodule (E1E2,l) is isomorphic to (M,x).

E
Proof: The map o given by right multiplication by (g 2) from (01 g)

to (0 M ) is full with respect to the standard u.t. rank function on
2

O E
E. M . : . :
R = (01 E ) and it is factor complete by 5.14; so all f.g. projectives over
2

M2(

E. O O M
Lt = i R. i
El %) E2) R are induced from Since (01 o) and (0 E2>

become iscmorphic over the universal localisation at o, it follows that

u s
El (M%) E2 must be a fir.

Isamorphism theorems

Theorem 13.4 Let Sl and 32 be simple artinian rings, and let M be a

cyclic Sl' 82 bimodule. Assume that x and y are both generators of M

(o]
as a bimodule such that (0 x) and ( y

00 o 0) both define full maps from

Sl 0 to o M on the ring Sl M with respect to the standard u.t.
o O (o} 32 o} 82

s o S s s o
rank function. Then Sl M%) 32 is isomorphic to Sl M%) S2'

S
Proof: The universal localisation of 0l 2 at the given rank function is
both the universal localisation of M2(Sl (Mux) S2) at the unique rank

’

function and the universal localisation of M, (S L S,) at its rank
271 (M,y) 2
. [o} = o . i
function; so, M2(Sl (M x) S2) M2(Sl (M, y) S2)’ since both sides of the
isomorphism are simple artinian rings, we can deduce that
o = o .
SLoax) 527 51 o,y S2

For skew fields, we can eliminate a hypothesis from this theorem.

1 Ep

= E i
2 El (M?y) 2 for any bimodule generators x

Theorem 13.5 Let El and E2 be skew fields; let M be a cyclic E
bimodule; then El (M?x) E
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and y of M.

If y= Zeixei, it is possible to calculate that a specific map

E to E

[}
from El M,y) E2

° . N
1 (%) E2 that extends to an isomorphism of

o 3 o : : 3
El M,y) E2 with El Mox) E2 is given by E2 - E2 by the identity map,

T
and E is mapped to Elzeiei.

We see from the last theorem that if Fl and F2 are common

as E., E

skew subfields of E and E such that E @ E. S E QF E2 1

1 2 1'F 2 1

1 2 2

1F

bimodules, then E, o E, = E © E,. Our next result simply states some
1 2 1 P 2

interesting special cases of this result.

Theorem 13.6 Let S be a f.d. simple artinian k-algebra, and let S be

1 2

a simple artinian k-algebra such that Siﬂksz is simple artinian. If Tl
and T2 are common f.d. simple artinian k-algebras such that [Tl:k] = [Tzzk],

[} 4 [}
then Sl b= 52 Sl 7 52.

1 2
~ . . (o] s s

Proof: SlQT152 = 519T252' since the ring Slﬂks2 is simple artinian, and

both bimodules are free 52 modules of the same rank. So

R = Sl SlQTlS2 . Sl leT252
(o} 52 (o} 52
(o} lQT 1
Right multiplication by the element 1 ] defines a full map with
o (o}

respect to the standard u.t. rank function from R(é 8) to R(O l)' since

the localisation of R 1is isomorphic to M2(Sl — 52) by 13.2, which has

T

a homomorphism to a simple artinian ring inducing our rank function on R,

o 1le_ 1
T2

Similarly, the element defines a full map; therefore, by 13.4,

(o] (o]

Our last result gives us a number of isomorphic simple artinian
coproducts with the same factors but different amalgamated simple artinian
subrings; our next result uses this to provide examples of isomorphic simple

artinian coproducts that have different factors and the amalgamation takes
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place over the same central subfield.

Theorem 13.7 Let S be a f.d. simple artinian k-algebra, and let Sl and

S2 be simple artinian subalgebras of S such that [Sl:k] = [S2:k]; then
Sos ¥5o0s,.

Proof: S oS, €S0 (S,068 ) Tso0 (S, 08, ) byl3.6, since the centre
k ! s, 2k 1 s, 2x 1
2 1
of SlLJS2 is k or else purely transcendental over of degree 1, as we
k

saw in chapter 10, so that s°ak(sl o) S2) is simple artinian. However,
k

So (8, 08,) TSo0s,.
S, 2 k 1 k 2
We can prove a stronger theorem than 13.7 in the case where S
is a central simple artinian k-algebra, that is, when the centre of S 1is
exactly k.
Theorem 13.8 Let S be a central simple k-algebra such that [S:k] = n2;
let S be a simple artinian k-subalgebra such that [Sl:k] = m. Then

L 2 m-1
S oS, ¥ se k<X}, where |X| =n" —=,
k 1 k m
Proof: M2(S [¢] Sl) is the universal localisation of S SQkSl at the
k
) (o] Sl
standard u.t. rank function. As a bimodule, SQkSl &S, m copies of the
i=1
bimodule S where S acts on the left in the obvious way, and Sl acts
on the right via the embedding of Sl in S. o
By 13.1, the universal localisation of S es at the map
i=1
O Sl

from [s [o] to (o] S given by right multiplication by fO (1,0,0...)

(¢] (o] (o] Sl (o] (o]
is M2(T), where T is the tensor ring over S o Sl = S on the bimodule
51
m m 2 m-1
® S® S®, S, which is ® SR, S. This is the direct sum of n~ —— simple
. S . S m
i=1 1 i=1 1
bimodules; so T T S<X> where X 1is a set of n2 Eél elements which we
2 m-1

identify with n -;r-S-centralising generators of this bimodule. Hence, the

universal localisation of T at its unique rank function is SQkk(X).
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Therefore, M2(Sﬁkk<X>) is a universal localisation of S s® S that

o] Sl

is simple artinian, and the rank function induced on this ring is p; so
s k(x> =S5So0sS

k l

We can use our methods in a rather more complicated way in order

to investigate simple artinian coproducts of the fomm Mm(k) o Mn(k); we
k

should like to show that these are all suitably sized matrix rings over a
free skew field on a suitable number of generators. We are not able to deal
with this degree of generality at present, but there are a number of special
cases of interest where we can prove this result; we shall also show that
they are all suitably sized matrix rings over stably free skew fields. A

skew field, F, 1is said to be stably free, if F g k<X} = k<Y?, for a

finite set X. Of course, if m divides n, our last theorem applies to
show that Mm(k) i Mn(k) B Mn(kfxi) for suitable X; this actually allows
us to prove the next theorem with little effort. Before we do this, we note
a few generalities. We write Mm(k) i Mn(k) = MP(F); since the rank function
on Mm(k) E Mn(k) has as image.bz where p 1is the least common multiple
of m and n, and Mp(F) is tge universal localisation of M (k) u M (k)
at this rank function, it follows that p is the least common multlple of

m and n.

Theorem 13.9 Suppose that Ms(k) o Mt(k) =M (F), where p = l.c.m.{s,t};

then M (k) oM_ (k) =M (F o k¢Y}) for a sultable finite set Y.
sn k tn pn x

~

Proof: Msn(k) ¢} Mn(k) M n(k{Z:L}) for some set 2Z. by 13.8. So

1

~

Ms (k) i Mt k) = Msn(k) i Mn(k) o) Mtn(k) M n(k(Zl)) o Mtn(k); this

M_ (k) s M_(k)
n n

~

is isomorphic to Mn(Ms(k<Zl)) o Mt(k)) as we see by taking the centraliser
k
of Mn(k) inside it.

M (k€Z.3>) oM_(k) = M_(k<2Z») o M, (k) o M_(k)
s 1 X t s M (%) k t

=M (k<z.}) o M (F). Taking the centraliser of M_(k), we find that
s 1 M (k) P s
s
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this is the ring Ms(k<zl) o M .(F)), where p' = p/s.

x P
k(zl) o Mp,(F) is the universal localisation of the hereditary
k
ring k<zl> ; MP. (F) k<zl> u MB' (k) \ U Mp, (F) = My, (k<zz>) " u My, (F),
p' (k) p' (k)
where 22 is the set of components of elements of Z1 written as matrices
over the centraliser of Mp,(k) in Mp,(k) u k<Z.>. It is clear that this
X 1

ring is just M_,(F u k<Zz>), which is a hereditary ring whose only universal
k
localisation that is simple artinian is Mp,(F o K(Zz)). Tracing the argu-

ment back shows that M__(k) o M_ (k) = M _(F okk(z ».
sn tn Pn 2
k k
In order to go a little further, we look at suitable universal

localisations of the ring R = Mm(k) Mm(k)Qan(k) , which is a f.d.

o} Mn k)

hereditary k-algebra; we shall use 13.7 to find good universal localisations
of related rings, which allow us under suitable restrictions on m and n
to construct universal localisations of R at full maps with respect to the
rank function assigning the rank % to both indecomposable projectives,
that have the form sz(k(x)).

We recall from the last chapter that the epimorphism from a f.d.
hereditary algebra, R, associated to a pre-projective or pre-injective
module right module is always a universal localisation. For our purposes, we

k

s
), where s 2 2. We wish to find the rank
o k

take R to be the ring <

function associated to a particular module M. This is given by

L O\ey = et ©\. . 0 o)., _ ufo ©). )
o((o O)R) —[M(O o :k1/[M:k], and p(<0 >R) [M(O 1),;(]/[",,(]. We

summarise from Dlab, Ringel (76), what rank functions occur associated to

—

pre-projective or pre-injective modules over R; the pairs

1
([M(; g):k],[M(? i):k]) that occur are the positive real roots associated

-+

to the graph, =+ . - , where there are s arrows from the first point to
3

second. Rather than developing here the precise theory which gives us these
positive real roots, we give an ad hoc description of them. We begin with

the pair (0,1); our inductive procedure is to pass from the pair (a,b)
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to the pair (b,sb - a); finally, if (a,b) 4is a pair constructed above,
then (b,a) 1is also a pair.
If (a,b) 1is a particular positive root corresponding to a

module M, then [M:k] = a + b, so that the rank function associated to

the epimorphism given by M is p(é g)R> = ;%E ) <g g) = EEE . That
k x°
is, we have an epimorphism from o0 k to Ma " b(k) which must be a
universal localisation at the above rank function.
By Morita equivalence, we must have an epimorphism from
Mb(k) Ss to M2ab(k)’ which is a universal localisation. Here, S

o] M_ (k)
a

is the unique simple left Mb(k), right Ma(k) bimodule. The rank function
associated to this universal localisation is the standard u.t. rank function.

Consequently, we consider the ring Mb(k) Mb(k)QkMa(k) as

o Ma(k)

Mb(k) gS ® Sab—s

o] M_ (k)
a

We see from the above that we have a universal localisation of this which by
s S M (k).

13.1, has the form MZ(T)’ where T =M <(Mab(k) Ma(k) b

ab (k) QMb(k)

A dimension check shows that the bimodule in the brackets is isomorphic to

ab(ab~s) : >
Mab(k) as Mab(k) bimodule. Consequently, T = Mab(k<X>), vhere

|X| = ab(ab=-s).
Therefore, the universal localisation of Mb(k) Mb(k)ﬂkMa(k)

o) M_ (k)
a
at the rank function we are considering is Mzab(k(x>). However, so is

~

MZ(Mb(k) z Ma(k)); therefore, Ma(k) z Mb(k) = Mab(k(x)).
We summarise what we have shown in the next theorem,

Theorem 13.10 Let (a,b) be a positive real root associated to the graph

+, where there are s arrows from the first point to the second. Then

goo o d

M_(k) oM (k) = M_ (k¢X}), where |X| = ab(ab-s).
a X b ab
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If s = 2, the pairs (a,b) that occur as positive roots are

exactly the pairs (n,n+l) or (n+l,n), so that

M (k) o M k) M (k<X») for a suitable finite set X. We use this
n X n+l n(n+l)

to prove the last result of this section.

Theorem 13.11 Let m and n be arbitrary positive integers; then

Mm(k) <] Mn(k) = MP(F), where P 1is the least common multiple of m and
k
n, and F 1is a stably free skew field.

Proof: By 13.9, we may assume that m and n are co-prime, since we may

reduce to this case. Let s and t be integers such that sm = tn + 1.

~

We know that M (k) o M (k) =M (F o k€<Y») for some finite set Y
mst k nst mnst k
by 13.9.

113

But M (k) oM (k)
mst X nst nst M () k t M () n
ms nt

which is isomorphic to Mmst(k) M o(k)
ms Mnt(k)

Moo (K42} o M (X) by 13.10,

for a finite set Z, since sm = tn + 1. If a divides b,
Ma(k) [} Mb(D) = Ma(k) o Mb(k) [} Mb(D) which is Mb(k(x)) o Mb(D), by
k k Mb(k) Mb(k)

13.8; this is isomorphic to Mb(D k<X¥). So, applying this twice completes

[}
k

1N

the proof that Mmst(k) o Mn (k)

M (k€z'»), where 2Z' is a finite
x nst mnst

set.

We have no examples of a skew subfield of a free skew field that
is not itself free, so certainly, we have no examples of stably free skew
fields that are not free. At present, it is not clear how these matters will

eventually settle themselves.

Artin's problem for skew field extensions

The purpose of this section is to construct extensions of skew
fields E > F such that the left dimension of E over F, [E:F]l, and
the right dimension of E over F, [E:F]r, are an arbitrary pair of integers
greater than 1. In fact, we shall consider a slightly more general problem;
what are the possible pairs of integers for the left and right dimension of

a simple artinian ring Mn(E) over a skew subfield F? We shall see that

M (k) o Mms(k) o Mn (k) o M st(k),
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arbitrary pairs of integers greater than 1 and divisible by n occur; that
the left and right dimensions are divisible by n follows from the observa-
tion that Mn(E) as a left or right module over itself is the direct summand
of n isomorphic simple modules.

We shall actually prove something rather stronger than this, and
the extra strength will be important in the final section where we shall
construct hereditary artinian rings of representation type 12(5). In order
to set up the notation used throughout this section, we state precisely what
we shall prove. Throughout this section, the skew fields E and F, the
elements {eij:i =1 to n}, the elements {skj:k =1ltoa, j=1 tonl},
the elements {tih :i=1ton h=1¢tobl and the integers n, a and b

will be named as in the following theorem.

Theorem 13.12 Let Mn(E) > F, where E and F are skew fields. Let
{eij: i,j =1 to n} be a set of matrix units in Mn(E). Let a,b be integers

such that an, bn > 1: let {skj:k =1ltoa, j=1ton} be elements of

Mn(E) that are left independent over F such that Skjejj = skj and let
{tih: i=1ton, h=1 tob}l be elements of Mn(E) that right independent
over F such that e,.t, =t, . Then there exist skew fields E o E,
_ ii ih ih _
F o F and a diagram of rings: Mn(E) ) Mn(E)

u u

F =] F

where F n Mn(E) = F, a left basis for Mn(E) over F is {skj} and a

1.

right basis for Mn(E) over F is {tih

In order to construct E and F in theorem 13.12, we shall need

an intermediate construction.

Theorem 13.13 Given the data of theorem 13.12, there exist skew fields E'

and F' and a diagram of rings: Mn(E') > Mn(E)
u u
F' =] F

where F' n Mn(E) = F, a basis for F'Mn(E) over F' s {skj} whilst

the pointed bimodule (Mn(E)F',l) is isomorphic to (Mn(E)QFF',lQl).

Notice that the extension of rings Mn(E') > F' still satisfies
all the conditions originally stated for the extension of rings Mn(E) > F,
There is also a version of theorem 13.13 interchanging the role

of left and right, of a and b, and of {skj} and {ti }, which we leave
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to the reader to formulate; we shall refer to this as theorem 13.13' when we

need to mention it.

We begin by showing how theorem 13,12 follows from 13.13 and
13.13°'.

We begin with the extension of rings Mn(E) > F; for inductive
purposes we set E = EO and F = FO.
At an odd stage in our construction we assume that we have a

diagram of rings: Mn(E ) = F2
v m u'm
E F
Mn( o) > Fg

such that F n Mn(Eo) =F and E are skew fields such that the

2m 0 2m’ F2m

conditions of theorem 13.12 are satisfied on replacing E and F by E2m

and F by theorem 13.13, we construct skew fields E

2m’ m + 1" Fom o+ 1

with a diagram of rings:

M Bom 4 1) 2 Fpp 1
u

* (E2m) > 2m
such that F2m i1 n Mn(EZm) = F2m’ a left basis for F2m + an(EZm) over
F2m +1 1is {skj} whilst (Mn(EZm)FZm r1, 1) = (Mn(EZm) QFZmFZm + 1’ 121)
as pointed bimodule. It follows also that Mn(Eo) n F2m 1 = Fo and that
the conditions of theorem 13.12 are satisfied with E and F

2m + 1 2m + 1

replacing E and F.

At an even stage of the construction, we assume that we have an

extension of rings: Mn(EZm _ l) > F2m -1
U U
Mn(Eo) > Fo
such that F2m -1 N Mn(Eo) = Fo where E2m -1 and F2m .1 are skew

fields such that the conditions of theorem 13.12 are satisfied on replacing
E and F by E2m -1 and F2m o1

skew fields E and F with a diagram of rings:
2m 2m

using theorem 13.13', we construct
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Mn(E2m) > F2m

U U
Mn(E2m - f > F2m -1
such that Mn(E2m _ l) n F2m = F2m -1 @ right basis for Mn(E2m _ l)F2m
over F, is {t, } whilst (F, M (E, _ )),1) % (FzmQFzm—an(Ezm - )12l
as pointed bimodule. It follows that Mn(EO) n F2m = FO and that the condi-~-
tions of theorem 13.12 are satisfied with E2m and F2m replacing E and
F.

On setting E = UEi, F = UFi, we have an extension of rings
i i

Mn(ﬁ) > F such that Mn(E) nNF=F., If s ¢ Mn(E)’ it lies in Mn(E )

2p
for some integer p; consequently it is left dependent on {skj} over

and right dependent on {tih} over F If there is a

Fop+1 2p + 2°
dependence relation between the elements {skj} on the left over F, the
dependence relation actually occurs over Fq for some ¢; however, this
cannot happen by construction; similarly, the elements {tih} remain right
independent over F. Therefore, the elements {Skj} are a left basis for
Mn(E) over F, and the elements {tih} form a right basis, which completes

the proof of theorem 13,12 assuming that we can prove theorem 13,13.

It remains to be seen how to prove theorem 13.13. There are two
problems to overcome; firstly, we must construct a skew field F' > F and
an F', Mn(E) bimodule M with an F-centralising generator x such that
[M:F'] = an with basis {xskj}; secondly, we must construct a simple
artinian ring Mn(E') containing F' and Mn(E) such that

(F'Mn(E),l) = (M,x) as pointed F°', Mn(E) bimodule. We have already seen

an approach to the second construction; we set Mn(E') =F' o M (E); for
(M,x}
the first construction, we set M__(F') =M (F) oM (E); let g be matrix
an an F D 1]
units where o and B run over pairs kj for k=1 to a and j =1 to n;
let M =

(F'Y) and x = we have yet to show that x 1is a

911 11%an 911 11f
generator of the bimodule M. Certainly, [M:F'] = an, and we intend to

show that {xskj} is a basis for M over F', For the time being we rename
the elements {skj} as the elements s since the indexing sets are the same.
If the elements {xsa} are not a basis, there is a relation Zfaxsa =0 for

elements fa e F'; rewriting this equation in the ring Man(F') we find that
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the row whose oth entry is fa kills the matrix which lies in

Man(F) ; Mn(E)' zgallsa' This implies that the element ggallsa lies in a

left ideal of rank less than 1 where the rank is the unique one on

Man(F) : Mn(E); in turn, 0 Zgallsa of T = Man(F) Man(F)QFMn(E)
o o} o} M _(E)
n
must lie in a left ideal of standard u.t. rank < %. Left ideals of T
inside T °© O) take the form o M__(F)e (o} N where I 1is a
o 1 an F

[0] I (0] o}
left ideal of M (E}) and N is an M__(F) submodule of M_(F)® M (E).
n an an Fn
Its standard u.t. rank is %(p(I) + p(N})). Let

J= /O Man(F)QFI 0 N\ be a left ideal of T containing
(-]
o I o o
o] Ig ..s \ of standard u.t. rank < %.
o all o

(0] o

We have a map from gll llgFZFSa < Man(F)QFI ® N to gll llN-
o

From the inequality p(I) + p(N) < 1, we deduce that

[gll llN:F] < an(l - p(I)); so we find that [nga n I:F) > anp(I).

It is convenient to return to the k3j notation rather than
indexing by o.
since p(I) =m/n <1 for some integer m, then for some i,

InMI(E)e,, =0, andso, I n IFs , =0; then p(I +M (Ele,.,) = (m + 1)/n
n ii k ki n ii

and also [(I + M (E)e,,) n I Fs .:F]l > anp(I) + a = an(p(I + M (E)e,,));
n ii K,3 kj n ii
’

we set I' tobe I + Mn(E)eii and if I' = Mn(E)' we repeat the argument;

by induction, we eventually find an = [Mn(E) n L Fs

.:F] > anp(M (E)) = an.
. n
k,]

kj

This contradiction shows that the element Zgallsa is not a

zero-divisor in Man(F') and so, the elements {xs .} } form

ks? = 1911 115

a basis for M = (F') over F'. So, M is a cyclic F', Mn(E)

911 11Man
bimodule on the generator x.

We consider the simple artinian ring Mn(E') =F' o M (E);
(M, x)
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we already know that (F'Mn(E),l) is isomorphic to (M,x) as pointed F',

Mn(E) bimodule; so F'Mn(E) has as left basis over F' the set {skj}.
Also, F'n Mn(E) = F; for let s ¢ Mn(E) such that xs = fx

for some element £ in F'; rewriting this equation in Man(F') gives

so, inside M__(F) 0 M_(E),
an F D
follows that s lies in F and s = f. Another way of stating this is

911 125 = f9y1 10 911 115911 T 911 1157t
that the normaliser of x in M 1is F.
It remains to show that (Mn(E)F',l) is isomorphic to

(Mn(E)QFF',lﬁl); in order to prove this, it is simpler to prove the follow-

ing more general result.

Theorem 13.14 Let R be a semihereditary ring with faithful projective
rank function p taking values in %—z; let o:P > Q be an atomic full
map between f.g. left projectives; let N be the normaliser of ¢ which we
regard as a subring of E(P) = EndR(P) and E(Q) = EndR(Q) via the
embedding as left and right normaliser respectively; then, in the category
of f.g. projectives over Ra and of Rp, (E(Q)a_lE(P),a—l) is isomorphic

as pointed bimodule to (E(Q)QNE(P),lQl).

Proof: It is immaterial whether we consider the bimodule in the category of
f.g. projectives over Ra or over Rp since {a} is a factor closed set
of maps and so by theorem 5.8 Ra embeds in Rp.

Certainly, there is a natural map from E(Q)QNE(P) to
E(Q)a_lE(P) sending 121 to a_l. It remains to check that there is no
kernel.

There are two natural maps from HomR(Q,P) to E(Q)QNE(P);
¢l:8 -+ Ba®l and ¢2:8 -+ 1leaf, and their images agree under the natural map
from E(Q)QNE(P) to E(Q)a-lE(P). However, we have the relation
a(Ba) = (aB)a from which we see that the element of N that goes to Ba
in E(Q) goes to oaf in E(P); it follows that the maps ¢l and ¢2
agree; it is an embedding since the composition with the map to
E(Qa "E(P) c Hom

R

(R 2 O,R ® P) 1is the embedding of Hom_(Q,P); we shall
o P RYOR R
regard HomR(Q,P) as an E(Q),E(P) sub-bimodule via this map.

Consider a relation in E(Q)a—lE(P);

-1
+ =
1/ fay +8=0

where § € HomR(Q,P); we shall show by induction on n that the relation
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n

I B,Qyi + § = 0 holds in E(Q)QNE(P); so far we have shown this to be
i=1*
true if n = O.

From the relation 1/, we find that the map

a Y1 has nullity p(P) = p(Q).
a (o2 2
. 2
L]
. .
o a Yn
Bl 82 e Bn -8

We write an equation expressing this defined over R:

o Yl
. ol .
o ; _ o (v|¢2)
a yn 1
Bl Bn -6

u and v must be full maps such that uv = M . By 1.19, there is an

invertible map € such that ue =

for full maps ui,vi we may adjust our previous equation to obtain the

equation:
“. R\ T,
. 0 * -
o . . .
@ Yn Tn
Bl....Bn

Since a is an atomic full map, we may further assume that one of ui,vi is



an identity map whilst the other is a. If = a

51

- em
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which lies in

N and this allows us to shorten our relation by using a relation holding in

E(Q)@NE(P); by induction we deduce that our original relation is a

consequence of relations in E(Q)QNE(P). Similarly, if

map and v_= o, then B =
n n

consequence of a relation in E(Q)QNE(P).

n

So, we may assume that uy

is an identity

LA and again our relation is forced to be a

is

the identity map on P and Y let LI be the first My that is

&, We rewrite our equation with this information:
o Y
. O .l
o - .
o Y
Bl .. Bn -8

[

Since the top left hand corner of the leftmost map on the right hand side is

invertible, we may adjust our equation again to obtain:

o Yl
? 0 -
o .
o Yn
- t )
Bl . e e Bn J ol [ ok c e e on

From this, we have the relations ¢.o + aw, = O:¢, € E(P),wi €E(Q):

so ¢i and Wy lie in the left and right normaliser of ¢ respectively.

Further, we have the relation Ye 41" To;vy toaty 4 g7

allows us to shorten our relation by one that holds in E(Q)QNE(P),

once again, this

and by

induction, the relation 1/ is a consequence of a relation in E(Q)QnE(P).

We have shown that in all circumstances ZBiQyi + § = 0, which

is what we needed to prove our theorem.

To complete the proof of theorem 13.13, we need to show that this
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last result implies that inside F' o Mn(E)' (Mn(E)F',l) is isomorphic
(M, x)

to (Mn(E)QFF',l@l).

We regard MZ(F' o M (E)) as the universal localisation of
(M, x)
the matrix ring T = /F' M at the standard u.t. rank function. Let
o} M _(E)
n
P = [F o] and let @ = /O M and a:P + Q be right multiplica-
0 o} O M (E)
n
tion by /O x\; then EndR(Q) = Mn(E) and EndR(P) = F'; the isomorphism
(0] (0]

between F' o M (E) and End_ (T
n T

(M,x) p 1

F' to EndR(P) and Mn(E) to aEndR(Q)a . Therefore, we need to

p@TP) is induced by the map that sends

calculate the pointed bimodule (aEndR(Q)a-lEndR(P),l) as

aEndR(Q)a—l, EndR(P) bimodule; since a is an injective map, this is the
same as calculating (EndR(Q)a-lEndR(P),a_l) as EndR(Q), EndR(P) bimodule.
Since a is an atom, our last theorem shows that this isomorphic to
(EndR(Q)@NEndR(P),l@l) as pointed bimodule, where N 1is the normaliser of
a; this is just the normaliser of x ¢ M which we have shown is F,

Therefore, (Mn(E)F',l) is isomorphic to (Mn(E)QFF',lQl).
This completes the proof of theorem 13.13 and, by symmetry,
theorem 13.13' follows; we have already seen that theorem 13.12 follows

from these.

An hereditary artinian ring of representation type 12(5)

In (Dowbor, Ringel, Simson 79) they showed that hereditary

artinian rings of finite representation type, by which we mean that there

are only finitely many f.g. indecomposable modules, correspond to Coxeter
diagrams in the same way that hereditary artinian algebras f.d. over a
central subfield correspond to Dynkin diagrams. The Dynkin diagrams are all
realised by suitable f.d. hereditary algebras, however, there were no known
examples of hereditary artinian rings whose representation type corresponded
to a Coxeter diagram that was not Dynkin since such example required an
extension of skew fields E > F where the left and right dimensions of E

over F are finite and different; we shall construct an hereditary artinian
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ring of representation type corresponding to the Coxeter diagram 12(5). At
present, there are no examples known corresponding to the other Coxeter
diagrams apart from H3 and H4 which arise as a trivial consequence of the
existence of suitable bimodules for 12(5).

A sgecies is a directed graph whose vertices v are labelled by
skew fields DV and whose edges e are labelled by bimodules Me where Me
is a Die' DTe bimodule for ie the beginning and Te the end of the edge

e. The tensor algebra of the species is a tensor algebra of the bimodule

(-] Me over the ring XDV, where DvMe =0 if v =z ie and similarly
MeDv =0 if v 2 T If R 1is an hereditary artinian ring of finite
representation type, it is shown in the paper cited that R must be Morita
equivalent to the tensor algebra of a species; so, the species may be
associated to R 1in a natural way; next the bimodules that occur in the
species of such an hereditary artinian ring of finite representation type
may be assigned an integer in a natural way {(corresponding to suitable
linear data on the bimodule which we shall not explain in detail); replacing
the species by the underlying undirected graph with the edges labelled by
the integer associated to the given bimodule, we always obtain a graph whose
connected components are Coxeter diagram. Hereditary artinian rings
corresponding to the same Coxeter diagram have very similar module categories.
Next, we shall state precisely what conditions we need on a
bimodule to construct an hereditary artinian ring of type 12(5). Let E and
F be skew fields and let M be an E,F bimodule; we may form the F,E
bimodule MR = HomF(M,F); if [M:F]r = n, then [MR:F] =n also. If the
cardinals [M:F]r, [MR:E]r, [MRR:F]r ... are all finite, the bimodule is

said to have finite right dualisation; the sequence of cardinals is always

known as the right dimension sequence. We shall be interested in constructing

a bimodule such that the sequence of cardinals begins 2,1,3,1,...; in (Dowbor,
Ringel, Simson 79) it is shown that if such a bimodule exists the rest of

the dimensions are determined; further, the ring is an hereditary

E
O F
artinian ring of representation type 12(5). First, we turn this information
on the bimodule into information on the skew fields E and F.

Let M be a G,H bimodule for skew fields G and H; if
[M:F]r = n, the action of G on M induces an embedding of G into Mn(H);
in turn we may recover M from an embedding of G into Mn(H) by regarding
the simple left Mn(H) as G,H bimodule via the action of G induced by

its embedding in Mn(H); by the duality of rows and columns in a matrix ring,
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it is clear that MR = HomH(M,H) is isomorphic as H,Mn(H) bimodule and
consequently as H,G bimodule to the simple right Mn(H) module. Therefore,

a bimodule sequence beginning a,b,c ... for an H,G bimodule M corresponds
to an embedding of G into Mb(H) such that [Mb(H):G]l = ab whilst
[Mb(H):G]r = ¢b. In turn, if we have an E,F bimodule M which has a

right bimodule sequence beginning 2,1,3,1,... this corresponds to an
embedding of F into E such that [E:F]l = 2, [E:F]r = 3, whilst for

the embedding of E into M3(F) given by the left action of E on itself
[M3(F):E]l =3 and [M3(F):E]r = 3. It remains to construct such an

extension of skew fields.

The construction

Let EO > FO be an extension of skew fields such that

:F = . = 3. : .
[Eo O] 2, and [EO FO]r 3; 1let {1l,e} be a left basis whilst

{1 = el,ez,e3} is a right basis. The left action of E on itself together
with the given right basis induces an embedding of EO into M3(FO) where
X ¢ E is sent to the matrix (f,.) such that xe, = e ,f,.,. Let

o) ij i1 1]
{g.,.: 1,7 = 1 to 3} be matrix units corresponding to the basis chosen. Then

1]
M3 (Fla13091
embedding of E into M_(F) to (E_1).
(o] 3 fo) (¢}

) is isomorphic as pointed EO, FO bimodule via the given

We shall construct skew fields E>F
u u

Es2Fs

T

such that EO n F = FO’ a left basis for E over F is {1,e}, a right
basis for E over F is {el, ey e3}; under the embedding of E into
M3(f) given by the choice of basis {(and therefore extending the embedding

of EO into M3(FO)) a left basis for M3(F) over E is {gii: i =1 to 3}

which is also a right basis.

At an odd stage of the construction, assume that we have an

extension of skew fields E > F
2m 2m
v U
EO = FO
such that a left basis for E2m over F2m is {1l,e} a right basis is

{el, €y e3}. Under the embedding of E into M3(F2m) given by this

2m

choice of basis we have the extension of rings: M3(F2m) o E2m

U U

My (FO) > Eq
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such that a left basis for M3(F2m) over E2m is {gii:l =1 to 3}. By
theorem 13.12, there exist skew fields F2m s 1 E2m ‘1 and a diagram of

rings:
M3Fom+ 1) 2 Eon w1
v v
MyFon) 2 By

such that a left basis for M3(F2m + 1) over E2m + 1 1= {gii: i =1 to 3}
which is also a right basis. We have an embedding of F2m ‘1 into

) t = : .
E2m ‘1, £' > £ where gllf fgll which extends the embedding of F2m
into E2m' Under this embedding, (E2m s 1 1) as pointed E2m + l'F2m ‘1
bimodule is isomorphic to (M3(F2m + l)gll,gll). Since {elgll,ezgll,e3gll}
is a right basis for M3(E2m) over F2m and therefore a basis for
M3(F2m . l)g1l = M3(F2m)gll QFZmFZm 1 {el,ez,e3} is also a right basis
for E2m 1 over F2m 1" Also, E2m n F2m ‘1 = F2m since it is not
E,, and [EZm:FZer = 3. It follows that E nF, ., =F.

At an even stage of the construction, assume that we have an

extension of skew fields: E2m -1 =} F2m -1

Eo =] Fo
such that Eo n F2m -1 = Fo, and a right basis for E2m -1 over
Foo _ 1 1S {el,ez,e3} . So, we have an embedding of E2m .1 into
M3(F2m _ l) extending our embedding of Eo into M3(Fo). By theorem 13.12,
there exist skew fields E2m and F2m and a diagram of skew fields:
E2m > F2m
u u

Bom-17Fom-1

n - . .
such that E, _ F2m F2m _1’ @ left basis for E2m over F2m is
{1,e} whilst {el,ez,e3} is a right basis. Once more, we note that the
embedding of E2m into M3(F2m) induced by this right basis extends the
embedding of E2m -1 into M3(F2m _ 1).
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Consider the extension of skew fields, E > f, where E = UEi' and
i

F = pFi. Any element of E lies in E for some integer m and must
i

be left dependent on 1l,e and right de;:ndeit on el,ez,e3 over Ezm; if
there were a dependence relation between 1 and e over F, this would occur
over some Fn which we know does not happen; so, {l,e} is a left basis

for E over F and similarly {el,ez,e3} is a right basis. So,

[E:F] = 2, and [E:f]r = 3. This choice of basis induces an embedding of

E into M3(F) which is just the union of the embeddings of En into

M3(Fn) that we have considered at each stage of the construction. Any
element of M3(F) lies in M3(F2m) for some integer m; therefore, it is

both left and right dependent on {gii:i =1 to 3} over E Clearly,

2m + 1°
there can be no dependence relation between the elements {gii:i =1 to 3}

over E. So, [M3(§):E] =3 = [M3(f):E]r as we wished.
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